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The I/0 Crisis in HPC

In a world where FLOPS is the commodity.......
.....Disk /O often limits performance

e Any persistent data must make it off the supercomputer
- To magnetic disk or solid state storage

e Storage is not as connected to the high-speed network
as compute
- Because it needs to be shared with other computers
- Because it doesn’t add to TOP500 benchmarks
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Where does the /0 Come From?

e Checkpointing!
— And, writing output from simulation (which is checkpointing)
e Checkpoint workload

- Every node node writes local state to a shared file system
- Using POSIX calls (FS parallelized) or MPI 1/O
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Why Checkpointing

e At scale failures occur inevitably
- MPI synchronous model means that a failure breaks the code
— Lose all work since start (or restart)
e Each checkpoint provides a restart point
— Limits exposure, loss of work to last checkpoint
e By policy, all codes that run at scale on
supercomputers MUST checkpoint!
- HPC centers want codes to do useful work
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Checkpoint Approaches

e Automatic: store contents of memory and program

counters

— Brute force, large data, inefficient

— But easy, no development effort

- New interest in this approach with the emergence of VMs and
containers in HPC.

e Application specific: keep data structures and
metadata representing current progress. Hand coded
by developer.

- Smaller, faster, preferred, but tedious.
- Almost all “good” codes have application specific checkpoints

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y



A Checkpoint Workload

IOR benchmark
-~ Each node transfers 512 MB

e How much
parallelism?

e |What effects?

M. Uselton et al. Parallel I/O Performance:
From Events to Ensembles. IPDPS, 2010.

(a) I/O trace diagram
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/0 Rates and PDF

e What features do you observe?
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/0 Rates and PDF

e What features do you observe?
- Lagging processes = not realizing peak 1/0O performance
-~ Harmonics in I/O distribution = unfair resource sharing
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Statistical Observations

e Order statistics

- Fancy way of saying, the longest operation dominates overall
performance
e Law of large numbers
- | don’t think that they make this analysis cogent
— It’s right, but Gaussian distribution is not what matters
— A better, intuitive conclusion is

e (RB interprets) smaller files are better

— The worst case slow down on a smaller transfer takes less
absolute time than on a large transfer

- As long as transfers are “big enough” to amortize startups
costs
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Smaller Files Improve Performance

e Non-intuitive
- Smaller operations seems like more overhead
— But, a property of statistical analysis

e Smaller better as long as fixed costs are amortized
— Obviously, 1 byte is too small
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Figure 2: IOR 512 MB transfer using 1024 processors where: a) 512 MB written via two 256MB write ()
” calls. b) Four calls (128MB). c¢) Eight calls (64MB). Note that the distributions become progressively narrower
and more Gaussian.
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The Checkpoint Crisis

As HPC codes get larger, I/O becomes more critical

e Some observations
— Checkpoint to protect against failure
- More components increase failure probability
- FLOPs grows faster than bandwidth

e Conclusion
— Must take slower checkpoints more often
- Eventually you will get no constructive work done between
checkpoints
e Mitigation (just delaying the problem)
— Burst buffers: fast (SSD) storage in high-speed network

-~ Observe the checkpoint persistence is shorter than needed for
output/analysis data
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Extra Slides

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y



Fixing I/O Performance

e Compare same I/O benchmark on two platforms
— 256 nodes of Franklin and Jaguar

Wl GhRbru¥is = — o — X
5 & iF _
— = = i
= £ P =
g _ — _
-— - pr— —
-~ - — —
- & o [ —

= = = - =

_—i & i =

- —

= ' — _

g = e = | —

- - = = -

= - - — e

=. [ — [ — —

= = i

- - :

= i = T

= - — — e ——

- R - —— _

— . L g [  —

- i . g — p—

- r . J— e  S— —

- . ¥ § ¥ 3

= i : - - :

-_— H N . » —

= 4 — —_ —_— —_—

= - e — — —_ jr—

= » a— — — —

= — ¥ = *

I 3 v M . i

= ¥ : E :

= : — - :

& - e i =

l 4 s * ~—

= i _ T —

=: g 2 —

=: i ]

=

fau (a) Franklin trace (d) Jaguar trace

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y



Problem = Long Read Delays
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Problem Analysis

e Not all reads are slow
- Just 4-8

e What special property
do they have?

— None: the reads are the
same as earlier and
later reads

e S0, maybe something
about ordering
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Problem Analysis

e After third read, system detects strided read pattern
and performs read-ahead
- Requires client side buffering of data

e Other uses of memory (client writes) consumed buffer
space, preventing the read-ahead from working

e Lustre file system executed a fall-back code path

- Perform small reads when no buffer space is available
—- Small reads are very inefficient
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Problem Resolution

e Patch the file system
— Turn off read-ahead in this case

e Problem solved (4x improvement)
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Another Code (Resolution Process)

e Reduce the number of tasks (10K -> 80) and have
each task do many small I/Os
— Variability reduction from more small 1/0Os
—- Reduce resource use and contention (fewer actors)
e Align the request size to file system parameters
- Increase transfer rate
e Defer and aggregate metadata writes
— Avoid lots of small updates
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Thought on MPI Performance

e Visualization tools work and matter
- Examples of 5x to 10x differences

e |/O is a huge component of performance
— This is only trending up
- Memory capacity and processor speed makes more data
— Scale requires more frequent checkpoints

e HPC is a complex and fragile ecosystem
- Many parameters and implementation subtleties

e Order statistics rule
— Only as fast as the slowest member

— This gets more problematic as we use more nodes

- HW errors and SW misconfiguations on one node can ruin a
Iy cluster. Must diagnose!
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