
Department of Computer Science, Johns Hopkins University

Lecture 18
I/O Performance and Checkpoints

EN 600.320/420/620
Instructor: Randal Burns
4 November 2020

Lecture 18: Checkpoint I/O Performance

The I/O Crisis in HPC
In a world where FLOPS is the commodity…….

…..Disk I/O often limits performance

l Any persistent data must make it off the supercomputer
– To magnetic disk or solid state storage

l Storage is not as connected to the high-speed network
as compute
– Because it needs to be shared with other computers
– Because it doesn’t add to TOP500 benchmarks

Lecture 18: Checkpoint I/O Performance

Where does the I/O Come From?
l Checkpointing!

– And, writing output from simulation (which is checkpointing)
l Checkpoint workload

– Every node node writes local state to a shared file system
– Using POSIX calls (FS parallelized) or MPI I/O

J. Bent et al. PLFS: A Checkpoint File Systems for Parallel Applications. SC, 2009.

Lecture 18: Checkpoint I/O Performance

Why Checkpointing
l At scale failures occur inevitably

– MPI synchronous model means that a failure breaks the code
– Lose all work since start (or restart)

l Each checkpoint provides a restart point
– Limits exposure, loss of work to last checkpoint

l By policy, all codes that run at scale on
supercomputers MUST checkpoint!
– HPC centers want codes to do useful work

Lecture 18: Checkpoint I/O Performance

Checkpoint Approaches
l Automatic: store contents of memory and program

counters
– Brute force, large data, inefficient
– But easy, no development effort
– New interest in this approach with the emergence of VMs and

containers in HPC.
l Application specific: keep data structures and

metadata representing current progress. Hand coded
by developer.
– Smaller, faster, preferred, but tedious.
– Almost all “good” codes have application specific checkpoints

Lecture 18: Checkpoint I/O Performance

A Checkpoint Workload

l How much
parallelism?

l What effects?

l IOR benchmark
– Each node transfers 512 MB

M. Uselton et al. Parallel I/O Performance:
From Events to Ensembles. IPDPS, 2010.

Lecture 18: Checkpoint I/O Performance

l What features do you observe?

I/O Rates and PDF

M. Uselton et al. Parallel I/O Performance: From Events to Ensembles. IPDPS, 2010.

Lecture 18: Checkpoint I/O Performance

l What features do you observe?
– Lagging processes = not realizing peak I/O performance
– Harmonics in I/O distribution = unfair resource sharing

I/O Rates and PDF

M. Uselton et al. Parallel I/O Performance: From Events to Ensembles. IPDPS, 2010.

Lecture 18: Checkpoint I/O Performance

Statistical Observations
l Order statistics

– Fancy way of saying, the longest operation dominates overall
performance

l Law of large numbers
– I don’t think that they make this analysis cogent
– It’s right, but Gaussian distribution is not what matters
– A better, intuitive conclusion is

l (RB interprets) smaller files are better
– The worst case slow down on a smaller transfer takes less

absolute time than on a large transfer
– As long as transfers are “big enough” to amortize startups

costs

Lecture 18: Checkpoint I/O Performance

Smaller Files Improve Performance
l Non-intuitive

– Smaller operations seems like more overhead
– But, a property of statistical analysis

l Smaller better as long as fixed costs are amortized
– Obviously, 1 byte is too small

Lecture 18: Checkpoint I/O Performance

The Checkpoint Crisis
As HPC codes get larger, I/O becomes more critical
l Some observations

– Checkpoint to protect against failure
– More components increase failure probability
– FLOPs grows faster than bandwidth

l Conclusion
– Must take slower checkpoints more often
– Eventually you will get no constructive work done between

checkpoints
l Mitigation (just delaying the problem)

– Burst buffers: fast (SSD) storage in high-speed network
– Observe the checkpoint persistence is shorter than needed for

output/analysis data

Lecture 18: Checkpoint I/O Performance

Extra Slides

Lecture 18: Checkpoint I/O Performance

Fixing I/O Performance
l Compare same I/O benchmark on two platforms

– 256 nodes of Franklin and Jaguar

Lecture 18: Checkpoint I/O Performance

Problem = Long Read Delays

Lecture 18: Checkpoint I/O Performance

Problem Analysis
l Not all reads are slow

– Just 4-8
l What special property

do they have?
– None: the reads are the

same as earlier and
later reads

l So, maybe something
about ordering

Lecture 18: Checkpoint I/O Performance

Problem Analysis
l After third read, system detects strided read pattern

and performs read-ahead
– Requires client side buffering of data

l Other uses of memory (client writes) consumed buffer
space, preventing the read-ahead from working

l Lustre file system executed a fall-back code path
– Perform small reads when no buffer space is available
– Small reads are very inefficient

Lecture 18: Checkpoint I/O Performance

Problem Resolution
l Patch the file system

– Turn off read-ahead in this case
l Problem solved (4x improvement)

Lecture 18: Checkpoint I/O Performance

Another Code (Resolution Process)
l Reduce the number of tasks (10K -> 80) and have

each task do many small I/Os
– Variability reduction from more small I/Os
– Reduce resource use and contention (fewer actors)

l Align the request size to file system parameters
– Increase transfer rate

l Defer and aggregate metadata writes
– Avoid lots of small updates

Lecture 18: Checkpoint I/O Performance

Thought on MPI Performance
l Visualization tools work and matter

– Examples of 5x to 10x differences
l I/O is a huge component of performance

– This is only trending up
– Memory capacity and processor speed makes more data
– Scale requires more frequent checkpoints

l HPC is a complex and fragile ecosystem
– Many parameters and implementation subtleties

l Order statistics rule
– Only as fast as the slowest member
– This gets more problematic as we use more nodes
– HW errors and SW misconfiguations on one node can ruin a

cluster. Must diagnose!

