Lecture 18
I/0 Performance and Checkpoints

EN 600.320/420/620
Instructor: Randal Burns
4 November 2020

; Department of Computer Science, Johns Hopkins University

The I/0 Crisis in HPC

In a world where FLOPS is the commodity.......
.....Disk /O often limits performance

e Any persistent data must make it off the supercomputer
- To magnetic disk or solid state storage

e Storage is not as connected to the high-speed network
as compute
- Because it needs to be shared with other computers
- Because it doesn’t add to TOP500 benchmarks

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Where does the /0 Come From?

e Checkpointing!
— And, writing output from simulation (which is checkpointing)
e Checkpoint workload

- Every node node writes local state to a shared file system
- Using POSIX calls (FS parallelized) or MPI 1/O

OO OO | |OO] O[O

EER E=E 55 55 5 = v 2R CIT] NN === EEE B I EEEES
A AN\] Tl /)] NESEEN L AN\ YA,
=== | e /// emmm
£ B 113
o (a) N-N (c) N-1 strided
V\:‘
™ QJ J. Bent et al. PLFS: A Checkpoint File Systems for Parallel Applications. SC, 2009.

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Why Checkpointing

e At scale failures occur inevitably
- MPI synchronous model means that a failure breaks the code
— Lose all work since start (or restart)
e Each checkpoint provides a restart point
— Limits exposure, loss of work to last checkpoint
e By policy, all codes that run at scale on
supercomputers MUST checkpoint!
- HPC centers want codes to do useful work

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Checkpoint Approaches

e Automatic: store contents of memory and program

counters

— Brute force, large data, inefficient

— But easy, no development effort

- New interest in this approach with the emergence of VMs and
containers in HPC.

e Application specific: keep data structures and
metadata representing current progress. Hand coded
by developer.

- Smaller, faster, preferred, but tedious.
- Almost all “good” codes have application specific checkpoints

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

A Checkpoint Workload

IOR benchmark
-~ Each node transfers 512 MB

e How much
parallelism?

e |What effects?

M. Uselton et al. Parallel I/O Performance:
From Events to Ensembles. IPDPS, 2010.

(a) I/O trace diagram
Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

/0 Rates and PDF

e What features do you observe?

1000 , . : :
70000 . . - r “ scratch
| scratch2
60000 | : .“.| | so| |- P
[|
50000 | ‘- [| | « |
", ‘ | 600 | |
» 40000 | | ‘ A — H | &
a ‘ § ‘\ |
= 30000} | ‘ — | a0l |l |~ R
20000 | || — | - 1 /N
| | | 200 | | A= R |
' ‘ [‘ [./ \ \ -
10000 |\ L L L] 1\ [\
N\ |\ llu ‘ .l \ /\)
0 50 100 150 200 250 0 10 20 30 40 50
seconds sec
(b) Aggregate 1/0 rate (¢) I/O time distribution
AZ}’V\}
g g M. Uselton et al. Parallel I/O Performance: From Events to Ensembles. IPDPS, 2010.

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

/0 Rates and PDF

e What features do you observe?
- Lagging processes = not realizing peak 1/0O performance
-~ Harmonics in I/O distribution = unfair resource sharing

. . . 1000 ' : ; ,
70000 , "_ scratch
60000 | I | ' R scratch2
I o 8o | |
M~ |
50000 | } I ‘ _ |
N \
» 40000 | “. ’ ‘ | - 6001
- c
m l 3 | |
= 30000 ' | ‘ 8 4ol Il |——me
20000 | || l — | | ' | \ | AN
) » 1 ! " Al [A R |
10000 | |\ | L \ 200 R I\
0 50 100 150 200 2 0 10 20 30 40 50
seconds sec
. (b) Aggregate 1/O rate (¢) IO time distribution
O -) M. Uselton et al. Parallel I/O Performance: From Events to Ensembles. IPDPS, 2010.

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Statistical Observations

e Order statistics

- Fancy way of saying, the longest operation dominates overall
performance
e Law of large numbers
- | don’t think that they make this analysis cogent
— It’s right, but Gaussian distribution is not what matters
— A better, intuitive conclusion is

e (RB interprets) smaller files are better

— The worst case slow down on a smaller transfer takes less
absolute time than on a large transfer

- As long as transfers are “big enough” to amortize startups
costs

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Smaller Files Improve Performance

e Non-intuitive
- Smaller operations seems like more overhead
— But, a property of statistical analysis

e Smaller better as long as fixed costs are amortized
— Obviously, 1 byte is too small

0.1 ' 0.1 0.1
i 0.08 I i 0.08 i 0.08
Z G 3 [
£ H & c \ I
S 006 . 8 006 A 3 006 fi—r
8 004 (- AV 8 004 AN AN g 004 Y ‘I
2 N / 8 nd VY 2 [|
o ARTRTAN o 8 | |
2 002} 7‘ l‘; o 2 0.02 \ 2 0.02 | L
| \ }v ; \ J \.‘.
0 | d ~ o LL g \ 0) 1
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
t (seconds) t (seconds) t (seconds)
(a) two 256 MB transfers (b) four 128 MB buffers (c) eight 64 MB transfers

Figure 2: IOR 512 MB transfer using 1024 processors where: a) 512 MB written via two 256MB write ()
” calls. b) Four calls (128MB). c¢) Eight calls (64MB). Note that the distributions become progressively narrower
and more Gaussian.

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

The Checkpoint Crisis

As HPC codes get larger, I/O becomes more critical

e Some observations
— Checkpoint to protect against failure
- More components increase failure probability
- FLOPs grows faster than bandwidth

e Conclusion
— Must take slower checkpoints more often
- Eventually you will get no constructive work done between
checkpoints
e Mitigation (just delaying the problem)
— Burst buffers: fast (SSD) storage in high-speed network

-~ Observe the checkpoint persistence is shorter than needed for
output/analysis data

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Extra Slides

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Fixing I/O Performance

e Compare same I/O benchmark on two platforms
— 256 nodes of Franklin and Jaguar

Wl GhRbru¥is = — o — X
5 & iF _
— = = i
= £ P =
g _ — _
-— - pr— —
-~ - — —
- & o [—

= = = - =

_—i & i =

- —

= ' — _

g = e = | —

- - = = -

= - - — e

=. [— [— —

= = i

- - :

= i = T

= - — — e ——

- R - —— _

— . L g [—

- i . g — p—

- r . J— e S— —

- . ¥ § ¥ 3

= i : - - :

-_— H N . » —

= 4 — —_ —_— —_—

= - e — — —_ jr—

= » a— — — —

= — ¥ = *

I 3 v M . i

= ¥ : E :

= : — - :

& - e i =

l 4 s * ~—

= i _ T —

=: g 2 —

=: i]

=

fau (a) Franklin trace (d) Jaguar trace

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Problem = Long Read Delays

35000 - 1000
write ——
30000
25000 | 100 |
20000 | -
@ g
= [~}
15000 read4 o
10
10000 lread‘s jreadp read? readB
| |
5000 B V. / i
U r ’ ¥ (1 1
ol
500 1000 1500 2000 2500 5 1 2 5 10 20 50 100200 500
L seconds seconds
(b) Franklin aggregate I/O rate (c) Franklin histogram
35000 read 1000 read
write write
30000
25000 100
@ 20000 - L
-] 3
=
15000 © 10 f (A
10000 *J
5000 N
1]
0
_ 0 500 1000 1500 2000 2500 5 1 2 5 10 20 50 100200 500
TN
ALY seconds seconds
O = (e) Jaguar aggregate I/0 rate (f) Jaguar histogram

JOHNS HOPKINS

Lecture 18: Checkpoint I/O Performance

U NI V E R S I T Y

Problem Analysis

e Not all reads are slow
- Just 4-8

e What special property
do they have?

— None: the reads are the
same as earlier and
later reads

e S0, maybe something
about ordering

35000 |
30000 }
25000 }

MB/s

10000

5000

20000 H

15000

" read
write —

500

1000 1500 2000 2500
seconds

(b) Franklin aggregate 1/0 rate

Lecture 18: Checkpoint I/O Performance

JOHNS HOPKINS

U NI V E R S I T Y

Problem Analysis

e After third read, system detects strided read pattern
and performs read-ahead
- Requires client side buffering of data

e Other uses of memory (client writes) consumed buffer
space, preventing the read-ahead from working

e Lustre file system executed a fall-back code path

- Perform small reads when no buffer space is available
—- Small reads are very inefficient

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Problem Resolution

e Patch the file system
— Turn off read-ahead in this case

e Problem solved (4x improvement)

1000

Before —
After

rp
100 | :

count
—L—

S 1 2 5 10 20 50 100200 500
seconds

P, (b) Read performance before and after

(c) Franklin trace after update
= middleware update

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Another Code (Resolution Process)

e Reduce the number of tasks (10K -> 80) and have
each task do many small I/Os
— Variability reduction from more small 1/0Os
—- Reduce resource use and contention (fewer actors)
e Align the request size to file system parameters
- Increase transfer rate
e Defer and aggregate metadata writes
— Avoid lots of small updates

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

Thought on MPI Performance

e Visualization tools work and matter
- Examples of 5x to 10x differences

e |/O is a huge component of performance
— This is only trending up
- Memory capacity and processor speed makes more data
— Scale requires more frequent checkpoints

e HPC is a complex and fragile ecosystem
- Many parameters and implementation subtleties

e Order statistics rule
— Only as fast as the slowest member

— This gets more problematic as we use more nodes

- HW errors and SW misconfiguations on one node can ruin a
Iy cluster. Must diagnose!

Lecture 18: Checkpoint I/O Performance JOHNS HOPKINS

U NI V E R S I T Y

