Lecture 23 I/O Performance

EN 600.320/420/620 Instructor: Randal Burns 27 March 2019

Department of Computer Science, Johns Hopkins University

Fixing I/O Performance

- Compare same I/O benchmark on two platforms
 - 256 nodes of Franklin and Jaguar

Problem = Long Read Delays

Lecture 23: Checkpoint I/O Performance

Problem Analysis

- Not all reads are slow
 - Just 4-8
- What special property do they have?
 - None: the reads are the same as earlier and later reads
- So, maybe something about ordering

Lecture 23: Checkpoint I/O Performance

Problem Analysis

- After third read, system detects strided read pattern and performs read-ahead
 - Requires client side buffering of data
- Other uses of memory (client writes) consumed buffer space, preventing the read-ahead from working
- Lustre file system executed a fall-back code path
 - Perform small reads when no buffer space is available
 - Small reads are very inefficient

Problem Resolution

- Patch the file system
 - Turn off read-ahead in this case
- Problem solved (4x improvement)

Lecture 23: Checkpoint I/O Performance

middleware update

Another Code (Resolution Process)

- Reduce the number of tasks (10K -> 80) and have each task do many small I/Os
 - Variability reduction from more small I/Os
 - Reduce resource use and contention (fewer actors)
- Align the request size to file system parameters
 - Increase transfer rate
- Defer and aggregate metadata writes
 - Avoid lots of small updates

Thought on MPI Performance

- Visualization tools work and matter
 - Examples of 5x to 10x differences
- I/O is a huge component of performance
 - This is only trending up
 - Memory capacity and processor speed makes more data
 - Scale requires more frequent checkpoints
- HPC is a complex and fragile ecosystem
 - Many parameters and implementation subtleties
- Order statistics rule
 - Only as fast as the slowest member
 - This gets more problematic as we use more nodes
 - HW errors and SW misconfiguations on one node can ruin a cluster. Must diagnose!

