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The I/0O Crisis in HPC

In a world where FLOPS is the commaodity.......
.....Disk I/0O often limits performance

e Any persistent data must make it off the supercomputer
- To magnetic or solid state storage

e Storage is not as connected to the high-speed network
as compute
—~ Because it needs to be shared with other computers
- Because it doesn’t add to TOP500 benchmarks
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Where does the /0 Come From?

e Checkpointing!
-~ And, writing output from simulation (which is checkpointing)
e Checkpoint workload

- Every node node writes local state to a shared file system
— Using POSIX calls (FS parallelized) or MPI 1/0
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Why Checkpointing

e At scale failures occur inevitably
- MPI synchronous model means that a failure breaks the code
— Lose all work since start (or restart)
e Each checkpoint provides a restart point
— Limits exposure, loss of work to last checkpoint
e By policy, all codes that run at scale on
supercomputers MUST checkpoint!
- HPC centers want codes to do useful work
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Checkpoint Approaches

e Automatic: store contents of memory and program

counters

- Brute force, large data, inefficient

- But easy, no development effort

- New interest in this approach with the emergence of VMs and
containers in HPC.

e Application specific: keep data structures and
metadata representing current progress. Hand coded
by developer.

- Smaller, faster, preferred, but tedious.
- Almost all “good” codes have application specific checkpoints
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A Checkpoint Workload

e IOR benchmark
— Each node transfers 512 MB

e Barriers

e How much
parallelism?

e |What effects?

M. Uselton et al. Parallel I/O Performance:
From Events to Ensembles. IPDPS, 2010.
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/0 Rates and PDF

e What features do you observe?
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/0 Rates and PDF

e What features do you observe?

- Lagging processes = not realizing peak I/0O performance
-~ Harmonics in I/O distribution = unfair resource sharing
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Statistical Observations

e Order statistics

- Fancy way of saying, the longest operation dominates overall
performance

e Law of large numbers
- |l don’t think that they make this analysis cogent
— It’s right, but Gaussian distribution is not what matters
— A better, intuitive conclusion is

e (RB interprets) smaller files are better

— The worst case slow down on a smaller transfer takes less
absolute time than on a large transfer

- As long as transfers are “big enough” to amortize startups
costs
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Smaller Files Improve Performance

e Non-intuitive

- Smaller operations seems like more overhead

- But, a property of statistical analysis

e Smaller better as long as fixed costs are amortized
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Figure 2: IOR 512 MB transfer using 1024 processors where: a) 512 MB written via two 256MB write ()

V calls. b) Four calls (128MB). c¢) Eight calls (64MB). Note that the distributions become progressively narrower
g, maE and more Gaussian.

Lecture 22: Checkpoint I/O Performance

JOHNS HOPKINS

U N 1 vV E R § I T Y



The Checkpoint Crisis

As HPC codes get larger, I/O becomes more critical

e Some observations
— Checkpoint to protect against failure
- More components increase failure probability
- FLOPs grows faster than bandwidth

e Conclusion
-~ Must take slower checkpoints more often

- Eventually you will get no constructive work done between
checkpoints

e Mitigation (just delaying the problem)
— Burst buffers: fast (SSD) storage in high-speed network

— Observe the checkpoint persistence is shorter than needed for
output/analysis data
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