Lecture 22
I/0 Performance and Checkpoints

EN 600.320/420/620
Instructor: Randal Burns
27 March 2019

” B Department of Computer Science, Johns Hopkins University

The I/0O Crisis in HPC

In a world where FLOPS is the commaodity.......
.....Disk I/0O often limits performance

e Any persistent data must make it off the supercomputer
- To magnetic or solid state storage

e Storage is not as connected to the high-speed network
as compute
—~ Because it needs to be shared with other computers
- Because it doesn’t add to TOP500 benchmarks

Lecture 22: Checkpoint I/O Performance

Where does the /0 Come From?

e Checkpointing!
-~ And, writing output from simulation (which is checkpointing)
e Checkpoint workload

- Every node node writes local state to a shared file system
— Using POSIX calls (FS parallelized) or MPI 1/0

OO OO | OO | OO

EEE E=E B B 11 EEEE RRRE=== EEE B I EEEEE
Y }1” NN NY, NSRS TNz L7l —mr)
RER eem / /) s
BT EEE | R
(a) N-N (c) N-1 strided
5 i{ J. Bent et al. PLFS: A Checkpoint File Systems for Parallel Applications. SC, 2009.
é’\ g

Lecture 22: Checkpoint I/O Performance

Why Checkpointing

e At scale failures occur inevitably
- MPI synchronous model means that a failure breaks the code
— Lose all work since start (or restart)
e Each checkpoint provides a restart point
— Limits exposure, loss of work to last checkpoint
e By policy, all codes that run at scale on
supercomputers MUST checkpoint!
- HPC centers want codes to do useful work

Lecture 22: Checkpoint I/O Performance JQHNVS EH?I?IIGIT\@

Checkpoint Approaches

e Automatic: store contents of memory and program

counters

- Brute force, large data, inefficient

- But easy, no development effort

- New interest in this approach with the emergence of VMs and
containers in HPC.

e Application specific: keep data structures and
metadata representing current progress. Hand coded
by developer.

- Smaller, faster, preferred, but tedious.
- Almost all “good” codes have application specific checkpoints

Lecture 22: Checkpoint I/O Performance JOHNS HOPKHT\IS

A Checkpoint Workload

e IOR benchmark
— Each node transfers 512 MB

e Barriers

e How much
parallelism?

e |What effects?

M. Uselton et al. Parallel I/O Performance:
From Events to Ensembles. IPDPS, 2010.

Lecture 22: Checkpoint I/O Performance

/0 Rates and PDF

e What features do you observe?

1000
70000 - . . . ‘ scratch
l scratch2
60000 | : Ul - goo| | A4
[‘
50000 | ~ - " :\
|] 600 | |
40000 | | Y =
g ’ 3 |‘ '
= 30000 | . ’ | [8 40l |’ |~———R/2
20000 | | | | . } | - 1
| | | | | 200 | | i R |
10000 | ' L“ ll"! ‘! ‘ |I"| I|'-| i l ")} "f‘ \l
0 50 100 150 200 250 0 10 20 30 40 50
seconds sec
(b) Aggregate 1I/0 rate (¢) I/0O time distribution

. G M. Uselton et al. Parallel I/O Performance: From Events to Ensembles. IPDPS, 2010.

Lecture 22: Checkpoint I/O Performance JOHNS HOPKINS

U N 1 vV E R § I T Y

/0 Rates and PDF

e What features do you observe?

- Lagging processes = not realizing peak I/0O performance
-~ Harmonics in I/O distribution = unfair resource sharing

1000 . .
70000 ' ' ' ' \ scratch
60000 | : I | || - Ra scratch2
| r_ | I 800 |
50000 | }] } | I
-
| |
» 40000 | ". }’ | . 600
- c
: I r :]
30000 } | ' 400 | u' |——RP2
20000 | || ‘} H |
10000 | | { | \L 200 'I " / ,‘I‘ |
\\ ' .‘. — .- " \"—V.A \ ;'\ ‘;"‘I‘ ’Il‘ N _,.»-"i‘ _~ » i
0 50 100 150 200 2t 0 0 20 30 40 50
seconds sec
e (b) Aggregate I/O rate (¢) I/O time distribution
£ - M. Uselton et al. Parallel I/O Performance: From Events to Ensembles. IPDPS, 2010.
2k) o

Lecture 22: Checkpoint I/O Performance JOHNS HOPKINS

U N 1 vV E R § I T Y

Statistical Observations

e Order statistics

- Fancy way of saying, the longest operation dominates overall
performance

e Law of large numbers
- |l don’t think that they make this analysis cogent
— It’s right, but Gaussian distribution is not what matters
— A better, intuitive conclusion is

e (RB interprets) smaller files are better

— The worst case slow down on a smaller transfer takes less
absolute time than on a large transfer

- As long as transfers are “big enough” to amortize startups
costs

Lecture 22: Checkpoint I/O Performance JOHNS HOPKHT\IS

Smaller Files Improve Performance

e Non-intuitive

- Smaller operations seems like more overhead

- But, a property of statistical analysis

e Smaller better as long as fixed costs are amortized

probability density f(t)

0.1

0.08

0.06

0.04

0.02

(a) two 256 MB transfers

probability density f(t)

Obviously, 1 byte is too small

01}

0.08

0.06

0.04

0.02

(b) four 128 MB buffers

0 LL

probability density f(t)

0.1

0.08

0.06

0.04

0.02

0

0 10 20 30 40 50

t (seconds)

(c) eight 64 MB transfers

Figure 2: IOR 512 MB transfer using 1024 processors where: a) 512 MB written via two 256MB write ()

V calls. b) Four calls (128MB). c¢) Eight calls (64MB). Note that the distributions become progressively narrower
g, maE and more Gaussian.

Lecture 22: Checkpoint I/O Performance

JOHNS HOPKINS

U N 1 vV E R § I T Y

The Checkpoint Crisis

As HPC codes get larger, I/O becomes more critical

e Some observations
— Checkpoint to protect against failure
- More components increase failure probability
- FLOPs grows faster than bandwidth

e Conclusion
-~ Must take slower checkpoints more often

- Eventually you will get no constructive work done between
checkpoints

e Mitigation (just delaying the problem)
— Burst buffers: fast (SSD) storage in high-speed network

— Observe the checkpoint persistence is shorter than needed for
output/analysis data

Lecture 22: Checkpoint I/O Performance JOHNS HOPKHT\IS

