Lecture 5.2
Parallel Memory Models

EN 600.320/420/620
Instructor: Randal Burns
12 February 2018

Department of Computer Science, Johns Hopkins University
Shared Memory Systems

- Large class defined by memory model
 - And thus, the programming model
- Shared-memory programming
 - Threads exchange information through reads and writes to memory
 - Synchronization constructs to control sharing
 - Easy to use abstraction
- Examples
 - OpenMP, Java, pthreads
Symmetric Multi-Processor (SMP)

- Shared memory MIMD system
 - All processors can address all memory
- Symmetric access to memory
 - Performance statement
- SMPs have scaling limits
- On symmetry
 - SMP not symmetric to caches
 - Multi-core (symmetric to L2, not L1)

https://computing.llnl.gov/tutorials/parallel_comp/
NUMA: Non-Uniform Memory Access

- Shared memory MIMD systems
- Latency and bandwidth to physical memory differs
 - by address and location
- Same programming semantics as SMP

https://computing.llnl.gov/tutorials/parallel_comp/
RB’s Take on NUMA

- Very difficult to program
 - The tools don’t help programmer account for NU
 - Easy to write programs that work correctly
 - More difficult to write programs that run fast

- But, all multicore is NUMA
 - Even SMPs today have NUMA properties
 - Because of cache hierarchy

- New programming tools to help in Linux
 - hwloc: https://www.open-mpi.org/projects/hwloc/
Message Passing

- Book calls these distributed memory machines
 - This term is deceptive to me
- Each processor/node has its own private memory
- Nodes synchronize actions and exchange data by sending messages to each other

https://computing.llnl.gov/tutorials/parallel_comp/
Programming Message Passing

- **MPI**
 - The “assembly language” of supercomputing
 - Libraries that allow for collective operations, synchronization, etc.
 - Explicit handling of data distribution and inter-process communication

- **Map/reduce and other cloud systems**
 - New paradigm that emerged from Google
 - Divide computation into data parallel and data dependent portions
 - Better abstraction of HW. More restrictive.
 - MR, Hadoop!, Spark, GraphLab, etc.
Hybrid Architectures

- When a message passing machine has SMP parallelism at each of its nodes
 - Book is behind on this trend: every machine is a hybrid

- How to program
 - MPI: ignore the SMP aspects
 - MPI + (OpenMPI, pthreads, Java, CUDA, OpenCL)
 - Expensive, hard to maintain
 - Automated compilation

https://computing.llnl.gov/tutorials/parallel_comp/