
Department of Computer Science, Johns Hopkins University

Lecture 5.2
Parallel Memory Models

EN 600.320/420/620

Instructor: Randal Burns

12 February 2018

Lecture 3: Parallel Architectures

Shared Memory Systems

 Large class defined by memory model
– And thus, the programming model

 Shared-memory programming
– Threads exchange information through reads and writes to

memory

– Synchronization constructs to control sharing

– Easy to use abstraction

 Examples
– OpenMP, Java, pthreads

Lecture 3: Parallel Architectures

Symmetric Multi-Processor (SMP)

 Shared memory MIMD system
– All processors can address all memory

 Symmetric access to memory
– Performance statement

 SMPs have scaling limits

 On symmetry
– SMP not symmetric to caches

– Multi-core (symmetric to L2, not L1)

https://computing.llnl.gov/tutorials/parallel_comp/

Lecture 3: Parallel Architectures

NUMA: Non-Uniform Memory Access

 Shared memory MIMD systems

 Latency and bandwidth to physical memory differs
– by address and location

 Same programming semantics as SMP

https://computing.llnl.gov/tutorials/parallel_comp/

Lecture 3: Parallel Architectures

RB’s Take on NUMA

 Very difficult to program
– The tools don’t help programmer account for NU

– Easy to write programs that work correctly

– More difficult to write programs that run fast

 But, all multicore is NUMA
– Even SMPs today have NUMA properties

– Because of cache hierarchy

 New programming tools to help in Linux
– hwloc: https://www.open-mpi.org/projects/hwloc/

– libnuma and numactl: http://oss.sgi.com/projects/libnuma/

Lecture 3: Parallel Architectures

Message Passing

 Book calls these distributed memory machines
– This term is deceptive to me

 Each processor/node has its own private memory

 Nodes synchronize actions and exchange data by
sending messages to each other

https://computing.llnl.gov/tutorials/parallel_comp/

Lecture 3: Parallel Architectures

Programming Message Passing

 MPI
– The “assembly language” of supercomputing

– Libraries that allow for collective operations, synchronization,
etc.

– Explicit handling of data distribution and inter-process
communication

 Map/reduce and other cloud systems
– New paradigm that emerged from Google

– Divide computation into data parallel and data dependent
portions

– Better abstraction of HW. More restrictive.

– MR, Hadoop!, Spark, GraphLab, etc.

Lecture 3: Parallel Architectures

Hybrid Architectures

 When a message passing machine has SMP
parallelism at each of its nodes

– Book is behind on this trend: every machine is a hybrid

 How to program
– MPI: ignore the SMP aspects

– MPI + (OpenMPI, pthreads, Java, CUDA, OpenCL)
 Expensive, hard to maintain

– Automated compilation

https://computing.llnl.gov/tutorials/parallel_comp/

