
Department of Computer Science, Johns Hopkins University!

Lecture 5.1  
OpenMP: Serial to Parallel"

EN 600.320/420!
Instructor: Randal Burns!
13 February 2017!



Lecture 2: Concepts in Parallelism 

Serial to Parallel"
l  My code’s not running fast enough: the most common 

parallel development scenario!
–  Video: data delays produce jitter, stalls!
–  Web: page render time causes user loss, discomfort!
–  Batch processing, indexing, analysis not completing in time !
–  High-throughput finance: other models running faster and beating 

mine to a decision -> lose arbitrage opportunity!

l  This leads to a natural software engineering process!
–  Profile code: find out what’s slow!
–  Parallelize slow part(s) only!
–  Migrate from serial implementation to parallel implementation!



Lecture 2: Concepts in Parallelism 

Serial to Parallel (ii)"
l  Not the best process!

–  Serial to parallel doesn’t produce the best designs!
–  Best parallel implementation may require a totally different design!
–  No natural evolution!

l  Just the easiest!
–  Compared to a clean-slate redesign!



Lecture 2: Concepts in Parallelism 

What is OpenMP"
l  Parallel programming environment (not language) for:!

–  Master/slave and/or fork/join execution model!
–  Loop parallelism patterns!
–  Shared-memory architectures!

l  But this doesn’t mean anything yet.!

l  It’s the simplest approach to parallelism!
–  Write a serial program in a language that you know (C++ or Fortran)!
–  Add directives to parallelize portions of the code!
–  Get a parallel program that computes that exact same result (serial to 

parallel equivalence)!



Lecture 2: Concepts in Parallelism 

OpenMP and Serial to Parallel"
l  Not fundamentally a serial to parallel environment!
l  But mostly used in this way because:!

–  Programs have a mix of serial to parallel parts!
–  Supports serial equivalence!
–  All code is serial, parallel parts are defined with directives!

l  Conforms nicely with Amdahl’s law!
–  Why did I say that?!



Lecture 2: Concepts in Parallelism 

Shared Memory"
l  Coherent read/write to common memory from multiple cores/

processors/(machines)!
–  Coherent = repeatable read, read last write, ….!
–  Abstraction that there is a single memory for all processors!
–  Data sharing by reading/writing to memory!

l  Hardware that provides this abstraction are called shared memory 
architectures (typically in a “single machine”)!

–  Even if there are different physical memories!
–  Non-Uniform memory architectures are typical today!

https://computing.llnl.gov/tutorials/
parallel_comp/ 



Lecture 2: Concepts in Parallelism 

Hardware for OpenMP"
l  Intel XEON Phi!

–  x86 compatible co-processors (P54C – original Pentium)!
–  72 cores, 1.5 GHz!
–  115 GB/s memory bandwidth!
–  Part of Top Supercomputer and Top Green Supercomputer!

l  Compares well with Tesla GPUs, but programmable 
via OpenMP!


