
EN 600.320/420 Parallel Programming

 CUDA: Compute Unified Device Architecture
 Created by NVIDIA

 A way to perform computation on the GPU

 Specification for:
 A computer architecture
 A language
 An application interface (API)

 A CUDA device is a highly parallel processor
 We assume it can execute many hundreds of

threads in parallel
 Threads to Stream Processors ratio > 1

 When writing CUDA software, think in terms
of threads, not processors

 Startup and Context Switching costs per
thread are very low!!

 The CUDA programming model imposes a
data decomposition approach

 The grid is the data domain (1D, 2D or 3D)
 The grid is decomposed into thread blocks
 A thread block is decomposed into threads

Device

Grid

B
(0,0)

B
(0,1)

B
(1,0)

B
(1,1)

B
(2,0)

B
(2,1)

…

… Thread Block (1,1)

T
(0,0)

T
(0,1)

…

T
(1,0)

T
(1,1)

T
(2,0)

T
(2,1)

…

…

 Thread blocks and threads are given unique
identifiers

 Identifiers can be 1D, 2D or 3D

 Used by the kernel to identify which part of a
problem to work on
 E.g. which data from memory to read, etc.

 A kernel is a program that processes a single
data element

 A thread runs the kernel on a data element

Thread Blocks
 A thread block may have up to 512 threads
 All threads in a thread block are run on the

same multi-processor
 Thus can communicate via shared memory
 And synchronize

 Threads of a block are multiplexed onto a
multi-processor as warps

 Warps are groups of 32 threads
 Warps are the fundamental scheduling unit of

the processor
 Dispatched two at a time to 16 processors each

(on Fermi)
 Each warp forms a SIMD group
 Thread blocks are not SIMD, Warps are!

 Dual issue instructions
 32 threads
 16 cores

 2 units/SM

Multi-Processor

Registers Local
Memory

…

CUDA Processor

Shared Memory

Global Memory

Constant Memory

Texture Memory

CUDA Processors have access to:
Memory Type Access Sharing

Registers Read/Write Private

Local Memory Read/Write Private

Shared Memory Read/Write Multi-Processor

Global Memory Read/Write Device

Constant Memory Read Device

Texture Memory Read Device

Registers
 Large number of registers per stream

processor (1024)
 Zero-clock cycle access
 Store either 64 bit integer or 64 bit float

Shared Memory
 A block of memory that is shared by all

stream processors in a multi-processor
 48 or 16K per SM in Fermi

 16KB per block, stored in 16x1KB banks
 Very fast to access (i.e. as fast as registers!)

without bank conflicts

Global Memory
 The large block of memory shared by all

multi-processors on the compute device
 Size depends on device – 256MB to 24GB

(Tesla K80 is 2x 12GB)
 High bandwidth (K80 is 480 GB/s)

 Slow to access – several hundred clock cycle
latency.

 We will create a simple CUDA program to add
two vectors

 U = {u0, u1, … un}
 V = {v0, v1, … vn}

 W = U + V = {u0 + v0, u1 + v1, … un + vn}

 Easy to parallelize: Each element is
independent!

+

=

U

V

W

 Threads: Each element is computed by a
separate thread

+

=

 Blocks: Group sets of adjacent elements into
blocks
 To conform with device parameters

+

=

U

V

W

 Grid: The entire vector

+

=

U

V

W

 Our program will be a single source file, with
two parts:

Device Code
 A kernel to perform the addition of two

elements

__global__ void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVectorC)

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}

 CUDA defines a language that is similar to
C/C++

 CUDA source code contains a mix of host and
device code and data

 CUDA defines a language that is similar to
C/C++

 Important Differences:
 Runtime Library
 Functions
 Classes, Structs, Unions

 Code that runs on the device can’t use normal
C/C++ Runtime Library functions

 No printf, fread, malloc, etc

 Most math functions have device equivalent

 There are a number of device specific
functions/intrinsics available:
 __syncThreads
 __mul24
 atomicAdd, atomicCAS, atomicMin, …

 On a CUDA device, there is no stack
 By default, all function calls are inlined

 All local variables, function arguments are
stored in registers

 NO function recursion

 No function pointers

 CUDA defines a language that is similar to
C/C++

 Syntactic extensions:
 Declaration Qualifiers
 Built-in Variables
 Built-in Types
 Execution Configuration

 Declspec = declaration specifier / declaration
qualifier

 A modifier applied to declarations of:
 Variables
 Functions

 Examples: const, extern, static

 CUDA uses the following declspecs for
functions:

 __device__
 __host__
 __global__

 Declares that a function is compiled to, and
executes on the device

 Callable only from another function on the
device

 Declares that a function is compiled to and
executes on the host

 Callable only from the host
 Functions without any CUDA declspec are

host by default

 Declares that a function is compiled to and
executes on the device

 Callable from the host
 Used as the entry point from host to device

__global__ void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVectorC)

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}

 Can construct a vector type with special
function:
make_{typename}(v0, v1, …)

 Can access elements of a vector type with
“.x”, “.y”, “.z”, “.w”: vecvar.x

 dim3 is a special vector type for grids, same
as uint3

 CUDA provides four global, built-in variables
 threadIdx, blockIdx, blockDim,
gridDim

 Typed as a ‘dim3’ or ‘uint3’

 Accessible only from device code
 Cannot take address
 Cannot assign value

 Our program will be a single source file, with
two parts:

Host Code
 Allocate GPU memory for vector
 Copy vector from host to device memory
 Launch kernel
 Copy vector from device to host memory

__global__ void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVectorC)

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}

...

float* pDeviceVectorA = 0;
float* pDeviceVectorB = 0;
float* pDeviceVectorC = 0;

cudaMalloc((void**)&pDeviceVectorA, VectorSize);
cudaMalloc((void**)&pDeviceVectorB, VectorSize);
cudaMalloc((void**)&pDeviceVectorC, VectorSize);

cudaMemcpy(pDeviceVectorA, pHostVectorA,
VectorSize, cudaMemcpyHostToDevice);

cudaMemcpy(pDeviceVectorB, pHostVectorB,
VectorSize, cudaMemcpyHostToDevice);

...

 There is no malloc or free function that can
be called from device code
 How can we allocate memory?

 From the host with cudaMalloc()
 And copy data in from host to initialize

bool VectorAddition(
unsigned N,
const float* pHostVectorA,
const float* pHostVectorB,
float* pHostVectorC)

{
const unsigned BLOCKSIZE = 512;
unsigned ThreadCount = N;
unsigned BlockCount = N / BLOCKSIZE;
unsigned VectorSize = ThreadCount * sizeof(float);

...

...

VectorAdditionKernel<<<BlockCount,BLOCKSIZE>>>(
pDeviceVectorA,
pDeviceVectorB,
pDeviceVectorC);

...

 CUDA provides syntactic sugar to launch the
execution of kernels

Func<<<GridDim, BlockDim>>>(Arguments, …)

 Func is a __global__ function

Func<<<GridDim, BlockDim>>>(Arguments, …)

 GridDim is a ‘dim3’ typed expression giving
the size of the grid (i.e. problem domain)

Func<<<GridDim, BlockDim>>>(Arguments, …)

 BlockDim is a ‘dim3’ typed expression giving
the size of a thread block

Func<<<GridDim, BlockDim>>>(Arguments, …)

 The compiler turns this type of statement
into a block of code that configures, and
launches the kernel

Func<<<GridDim, BlockDim>>>(Arguments, …)

...

cudaMemcpy(pHostVectorC, pDeviceVectorC, VectorSize,
cudaMemcpyDeviceToHost);

...
}

 CUDA uses the following declaration
qualifiers for variables:

 __device__
 __shared__
 __constant__

 Only apply to global variables

 Declares that a global variable is stored on
the device

 The data resides in global memory
 Has lifetime of the entire application
 Accessible to all GPU threads
 Accessible to the CPU via API

 Declares that a global variable is stored on
the device

 The data resides in shared memory
 Has lifetime of the thread block
 Accessible to all threads, one copy per thread

block

 If not declared as volatile, reads from
different threads are not visible unless a
synchronization barrier used

 Not accessible from CPU

 Declares that a global variable is stored on
the device

 The data resides in constant memory
 Has lifetime of entire application
 Accessible to all GPU threads (read only)
 Accessible to CPU via API (read-write)

 What if the vector size is not an integral
number of blocks?

 Option 1:
Perform bounds checking in kernel

 Option 2:
Pad out the vector to correct length

 Grid is 1-dimensional
 Maximum of 512 threads in a block
 Maximum of 65536 blocks in a 1D grid
Maximum vector size is 65536 times 512

 How do we operate on a vector larger than
16M elements?

 How do we operate on a vector larger than
16M elements?

 Option 1:
Use a 2-D indexing scheme

 Option 2:
Compute with several grids

 The GPU is faster than the CPU
 But, computing on the GPU involves

overhead:
Must get data to/from the GPU

 Where is the “break-even” point?

0

50

100

150

200

250

300

350

400

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Ti
m

e
(m

s)

Vector Size (Elements)

CUDA Vector-Vector Addition Performance

CPU

Memory Copy

GPU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
(m

s)

Vector Size (Elements)

CUDA Vector-Vector Addition Performance

CPU

Memory Copy

GPU

 Matrix addition is not a good CUDA program
 Why? In terms of Roofline? Not enough

operational intensity

 Never overcome the data transfer
 Not enough computation
 Better on the CPU

