
EN 600.320/420 Parallel Programming



 CUDA: Compute Unified Device Architecture
 Created by NVIDIA

 A way to perform computation on the GPU

 Specification for:
 A computer architecture
 A language
 An application interface (API)



 A CUDA device is a highly parallel processor
 We assume it can execute many hundreds of 

threads in parallel
 Threads to Stream Processors ratio > 1

 When writing CUDA software, think in terms 
of threads, not processors

 Startup and Context Switching costs per 
thread are very low!!



 The CUDA programming model imposes a 
data decomposition approach

 The grid is the data domain (1D, 2D or 3D)
 The grid is decomposed into thread blocks
 A thread block is decomposed into threads
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 Thread blocks and threads are given unique 
identifiers 

 Identifiers can be 1D, 2D or 3D

 Used by the kernel to identify which part of a 
problem to work on
 E.g. which data from memory to read, etc.



 A kernel is a program that processes a single 
data element

 A thread runs the kernel on a data element





Thread Blocks
 A thread block may have up to 512 threads
 All threads in a thread block are run on the 

same multi-processor
 Thus can communicate via shared memory
 And synchronize 

 Threads of a block are multiplexed onto a 
multi-processor as warps





 Warps are groups of 32 threads
 Warps are the fundamental scheduling unit of 

the processor
 Dispatched two at a time to 16 processors each 

(on Fermi)
 Each warp forms a SIMD group
 Thread blocks are not SIMD, Warps are!



 Dual issue instructions
 32 threads
 16 cores

 2 units/SM
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CUDA Processors have access to:
Memory Type Access Sharing

Registers Read/Write Private

Local Memory Read/Write Private

Shared Memory Read/Write Multi-Processor

Global Memory Read/Write Device

Constant Memory Read Device

Texture Memory Read Device



Registers
 Large number of registers per stream 

processor (1024)
 Zero-clock cycle access
 Store either 64 bit integer or 64 bit float



Shared Memory
 A block of memory that is shared by all 

stream processors in a multi-processor
 48 or 16K per SM in Fermi

 16KB per block, stored in 16x1KB banks
 Very fast to access (i.e. as fast as registers!)  

without bank conflicts



Global Memory
 The large block of memory shared by all 

multi-processors on the compute device
 Size depends on device – 256MB to 24GB 

(Tesla K80 is 2x 12GB)
 High bandwidth (K80 is 480 GB/s)

 Slow to access – several hundred clock cycle 
latency. 







 We will create a simple CUDA program to add 
two vectors

 U = {u0, u1, … un}
 V = {v0, v1, … vn}

 W = U + V = {u0 + v0, u1 + v1, … un + vn}



 Easy to parallelize:  Each element is 
independent!
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 Threads: Each element is computed by a 
separate thread
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 Blocks: Group sets of adjacent elements into 
blocks
 To conform with device parameters
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 Grid: The entire vector
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 Our program will be a single source file, with 
two parts:

Device Code
 A kernel to perform the addition of two 

elements



__global__ void VectorAdditionKernel(
const float* pVectorA, 
const float* pVectorB, 
float* pVectorC) 

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}



 CUDA defines a language that is similar to 
C/C++

 CUDA source code contains a mix of host and 
device code and data



 CUDA defines a language that is similar to 
C/C++

 Important Differences:
 Runtime Library
 Functions
 Classes, Structs, Unions



 Code that runs on the device can’t use normal 
C/C++ Runtime Library functions

 No printf, fread, malloc, etc

 Most math functions have device equivalent



 There are a number of device specific 
functions/intrinsics available:
 __syncThreads
 __mul24
 atomicAdd, atomicCAS, atomicMin, …



 On a CUDA device, there is no stack
 By default, all function calls are inlined

 All local variables, function arguments are 
stored in registers

 NO function recursion

 No function pointers



 CUDA defines a language that is similar to 
C/C++

 Syntactic extensions:
 Declaration Qualifiers
 Built-in Variables
 Built-in Types
 Execution Configuration



 Declspec = declaration specifier / declaration 
qualifier

 A modifier applied to declarations of:
 Variables
 Functions

 Examples:  const, extern, static



 CUDA uses the following declspecs for 
functions:

 __device__
 __host__
 __global__



 Declares that a function is compiled to, and 
executes on the device

 Callable only from another function on the 
device



 Declares that a function is compiled to and 
executes on the host

 Callable only from the host
 Functions without any CUDA declspec are 

host by default



 Declares that a function is compiled to and 
executes on the device

 Callable from the host
 Used as the entry point from host to device



__global__ void VectorAdditionKernel(
const float* pVectorA, 
const float* pVectorB, 
float* pVectorC) 

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}



 Can construct a vector type with special 
function:
make_{typename}(v0, v1, …)

 Can access elements of a vector type with 
“.x”, “.y”, “.z”, “.w”:  vecvar.x

 dim3 is a special vector type for grids, same 
as uint3



 CUDA provides four global, built-in variables
 threadIdx, blockIdx, blockDim, 
gridDim

 Typed as a ‘dim3’ or ‘uint3’ 

 Accessible only from device code
 Cannot take address
 Cannot assign value



 Our program will be a single source file, with 
two parts:

Host Code
 Allocate GPU memory for vector
 Copy vector from host to device memory
 Launch kernel
 Copy vector from device to host memory



__global__ void VectorAdditionKernel(
const float* pVectorA, 
const float* pVectorB, 
float* pVectorC) 

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}



...

float* pDeviceVectorA = 0;
float* pDeviceVectorB = 0;
float* pDeviceVectorC = 0;

cudaMalloc((void**)&pDeviceVectorA, VectorSize);
cudaMalloc((void**)&pDeviceVectorB, VectorSize);
cudaMalloc((void**)&pDeviceVectorC, VectorSize);

cudaMemcpy(pDeviceVectorA, pHostVectorA, 
VectorSize, cudaMemcpyHostToDevice);

cudaMemcpy(pDeviceVectorB, pHostVectorB, 
VectorSize, cudaMemcpyHostToDevice);

...



 There is no malloc or free function that can 
be called from device code
 How can we allocate memory?

 From the host with cudaMalloc()
 And copy data in from host to initialize



bool VectorAddition(
unsigned N,
const float* pHostVectorA, 
const float* pHostVectorB, 
float* pHostVectorC) 

{
const unsigned BLOCKSIZE = 512;
unsigned ThreadCount = N;
unsigned BlockCount = N / BLOCKSIZE;
unsigned VectorSize = ThreadCount * sizeof(float);

...



...

VectorAdditionKernel<<<BlockCount,BLOCKSIZE>>>(
pDeviceVectorA, 
pDeviceVectorB, 
pDeviceVectorC);

...



 CUDA provides syntactic sugar to launch the 
execution of kernels

Func<<<GridDim, BlockDim>>>(Arguments, …)



 Func is a __global__ function

Func<<<GridDim, BlockDim>>>(Arguments, …)



 GridDim is a ‘dim3’ typed expression giving 
the size of the grid (i.e. problem domain)

Func<<<GridDim, BlockDim>>>(Arguments, …)



 BlockDim is a ‘dim3’ typed expression giving 
the size of a thread block

Func<<<GridDim, BlockDim>>>(Arguments, …)



 The compiler turns this type of statement 
into a block of code that configures, and 
launches the kernel

Func<<<GridDim, BlockDim>>>(Arguments, …)



...

cudaMemcpy(pHostVectorC, pDeviceVectorC, VectorSize, 
cudaMemcpyDeviceToHost);

...
}



 CUDA uses the following declaration 
qualifiers for variables:

 __device__
 __shared__
 __constant__

 Only apply to global variables



 Declares that a global variable is stored on 
the device

 The data resides in global memory
 Has lifetime of the entire application
 Accessible to all GPU threads
 Accessible to the CPU via API



 Declares that a global variable is stored on 
the device

 The data resides in shared memory
 Has lifetime of the thread block
 Accessible to all threads, one copy per thread 

block



 If not declared as volatile, reads from 
different threads are not visible unless a 
synchronization barrier used

 Not accessible from CPU



 Declares that a global variable is stored on 
the device

 The data resides in constant memory
 Has lifetime of entire application
 Accessible to all GPU threads (read only)
 Accessible to CPU via API (read-write)



 What if the vector size is not an integral 
number of blocks?

 Option 1:
Perform bounds checking in kernel

 Option 2:
Pad out the vector to correct length



 Grid is 1-dimensional
 Maximum of 512 threads in a block
 Maximum of 65536 blocks in a 1D grid
Maximum vector size is 65536 times 512

 How do we operate on a vector larger than 
16M elements?



 How do we operate on a vector larger than 
16M elements?

 Option 1:
Use a 2-D indexing scheme

 Option 2: 
Compute with several grids



 The GPU is faster than the CPU
 But, computing on the GPU involves 

overhead:
Must get data to/from the GPU

 Where is the “break-even” point?
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 Matrix addition is not a good CUDA program
 Why?  In terms of Roofline? Not enough 

operational intensity

 Never overcome the data transfer 
 Not enough computation
 Better on the CPU


