
EN 600.320/420 Parallel Programming

 CUDA: Compute Unified Device Architecture
 Created by NVIDIA

 A way to perform computation on the GPU

 Specification for:
 A computer architecture
 A language
 An application interface (API)

 A CUDA device is a highly parallel processor
 We assume it can execute many hundreds of

threads in parallel
 Threads to Stream Processors ratio > 1

 When writing CUDA software, think in terms
of threads, not processors

 Startup and Context Switching costs per
thread are very low!!

 The CUDA programming model imposes a
data decomposition approach

 The grid is the data domain (1D, 2D or 3D)
 The grid is decomposed into thread blocks
 A thread block is decomposed into threads

Device

Grid

B
(0,0)

B
(0,1)

B
(1,0)

B
(1,1)

B
(2,0)

B
(2,1)

…

… Thread Block (1,1)

T
(0,0)

T
(0,1)

…

T
(1,0)

T
(1,1)

T
(2,0)

T
(2,1)

…

…

 Thread blocks and threads are given unique
identifiers

 Identifiers can be 1D, 2D or 3D

 Used by the kernel to identify which part of a
problem to work on
 E.g. which data from memory to read, etc.

 A kernel is a program that processes a single
data element

 A thread runs the kernel on a data element

Thread Blocks
 A thread block may have up to 512 threads
 All threads in a thread block are run on the

same multi-processor
 Thus can communicate via shared memory
 And synchronize

 Threads of a block are multiplexed onto a
multi-processor as warps

 Warps are groups of 32 threads
 Warps are the fundamental scheduling unit of

the processor
 Dispatched two at a time to 16 processors each

(on Fermi)
 Each warp forms a SIMD group
 Thread blocks are not SIMD, Warps are!

 Dual issue instructions
 32 threads
 16 cores

 2 units/SM

Multi-Processor

Registers Local
Memory

…

CUDA Processor

Shared Memory

Global Memory

Constant Memory

Texture Memory

CUDA Processors have access to:
Memory Type Access Sharing

Registers Read/Write Private

Local Memory Read/Write Private

Shared Memory Read/Write Multi-Processor

Global Memory Read/Write Device

Constant Memory Read Device

Texture Memory Read Device

Registers
 Large number of registers per stream

processor (1024)
 Zero-clock cycle access
 Store either 64 bit integer or 64 bit float

Shared Memory
 A block of memory that is shared by all

stream processors in a multi-processor
 48 or 16K per SM in Fermi

 16KB per block, stored in 16x1KB banks
 Very fast to access (i.e. as fast as registers!)

without bank conflicts

Global Memory
 The large block of memory shared by all

multi-processors on the compute device
 Size depends on device – 256MB to 24GB

(Tesla K80 is 2x 12GB)
 High bandwidth (K80 is 480 GB/s)

 Slow to access – several hundred clock cycle
latency.

 We will create a simple CUDA program to add
two vectors

 U = {u0, u1, … un}
 V = {v0, v1, … vn}

 W = U + V = {u0 + v0, u1 + v1, … un + vn}

 Easy to parallelize: Each element is
independent!

+

=

U

V

W

 Threads: Each element is computed by a
separate thread

+

=

 Blocks: Group sets of adjacent elements into
blocks
 To conform with device parameters

+

=

U

V

W

 Grid: The entire vector

+

=

U

V

W

 Our program will be a single source file, with
two parts:

Device Code
 A kernel to perform the addition of two

elements

__global__ void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVectorC)

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}

 CUDA defines a language that is similar to
C/C++

 CUDA source code contains a mix of host and
device code and data

 CUDA defines a language that is similar to
C/C++

 Important Differences:
 Runtime Library
 Functions
 Classes, Structs, Unions

 Code that runs on the device can’t use normal
C/C++ Runtime Library functions

 No printf, fread, malloc, etc

 Most math functions have device equivalent

 There are a number of device specific
functions/intrinsics available:
 __syncThreads
 __mul24
 atomicAdd, atomicCAS, atomicMin, …

 On a CUDA device, there is no stack
 By default, all function calls are inlined

 All local variables, function arguments are
stored in registers

 NO function recursion

 No function pointers

 CUDA defines a language that is similar to
C/C++

 Syntactic extensions:
 Declaration Qualifiers
 Built-in Variables
 Built-in Types
 Execution Configuration

 Declspec = declaration specifier / declaration
qualifier

 A modifier applied to declarations of:
 Variables
 Functions

 Examples: const, extern, static

 CUDA uses the following declspecs for
functions:

 __device__
 __host__
 __global__

 Declares that a function is compiled to, and
executes on the device

 Callable only from another function on the
device

 Declares that a function is compiled to and
executes on the host

 Callable only from the host
 Functions without any CUDA declspec are

host by default

 Declares that a function is compiled to and
executes on the device

 Callable from the host
 Used as the entry point from host to device

__global__ void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVectorC)

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}

 Can construct a vector type with special
function:
make_{typename}(v0, v1, …)

 Can access elements of a vector type with
“.x”, “.y”, “.z”, “.w”: vecvar.x

 dim3 is a special vector type for grids, same
as uint3

 CUDA provides four global, built-in variables
 threadIdx, blockIdx, blockDim,
gridDim

 Typed as a ‘dim3’ or ‘uint3’

 Accessible only from device code
 Cannot take address
 Cannot assign value

 Our program will be a single source file, with
two parts:

Host Code
 Allocate GPU memory for vector
 Copy vector from host to device memory
 Launch kernel
 Copy vector from device to host memory

__global__ void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVectorC)

{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];

}

...

float* pDeviceVectorA = 0;
float* pDeviceVectorB = 0;
float* pDeviceVectorC = 0;

cudaMalloc((void**)&pDeviceVectorA, VectorSize);
cudaMalloc((void**)&pDeviceVectorB, VectorSize);
cudaMalloc((void**)&pDeviceVectorC, VectorSize);

cudaMemcpy(pDeviceVectorA, pHostVectorA,
VectorSize, cudaMemcpyHostToDevice);

cudaMemcpy(pDeviceVectorB, pHostVectorB,
VectorSize, cudaMemcpyHostToDevice);

...

 There is no malloc or free function that can
be called from device code
 How can we allocate memory?

 From the host with cudaMalloc()
 And copy data in from host to initialize

bool VectorAddition(
unsigned N,
const float* pHostVectorA,
const float* pHostVectorB,
float* pHostVectorC)

{
const unsigned BLOCKSIZE = 512;
unsigned ThreadCount = N;
unsigned BlockCount = N / BLOCKSIZE;
unsigned VectorSize = ThreadCount * sizeof(float);

...

...

VectorAdditionKernel<<<BlockCount,BLOCKSIZE>>>(
pDeviceVectorA,
pDeviceVectorB,
pDeviceVectorC);

...

 CUDA provides syntactic sugar to launch the
execution of kernels

Func<<<GridDim, BlockDim>>>(Arguments, …)

 Func is a __global__ function

Func<<<GridDim, BlockDim>>>(Arguments, …)

 GridDim is a ‘dim3’ typed expression giving
the size of the grid (i.e. problem domain)

Func<<<GridDim, BlockDim>>>(Arguments, …)

 BlockDim is a ‘dim3’ typed expression giving
the size of a thread block

Func<<<GridDim, BlockDim>>>(Arguments, …)

 The compiler turns this type of statement
into a block of code that configures, and
launches the kernel

Func<<<GridDim, BlockDim>>>(Arguments, …)

...

cudaMemcpy(pHostVectorC, pDeviceVectorC, VectorSize,
cudaMemcpyDeviceToHost);

...
}

 CUDA uses the following declaration
qualifiers for variables:

 __device__
 __shared__
 __constant__

 Only apply to global variables

 Declares that a global variable is stored on
the device

 The data resides in global memory
 Has lifetime of the entire application
 Accessible to all GPU threads
 Accessible to the CPU via API

 Declares that a global variable is stored on
the device

 The data resides in shared memory
 Has lifetime of the thread block
 Accessible to all threads, one copy per thread

block

 If not declared as volatile, reads from
different threads are not visible unless a
synchronization barrier used

 Not accessible from CPU

 Declares that a global variable is stored on
the device

 The data resides in constant memory
 Has lifetime of entire application
 Accessible to all GPU threads (read only)
 Accessible to CPU via API (read-write)

 What if the vector size is not an integral
number of blocks?

 Option 1:
Perform bounds checking in kernel

 Option 2:
Pad out the vector to correct length

 Grid is 1-dimensional
 Maximum of 512 threads in a block
 Maximum of 65536 blocks in a 1D grid
Maximum vector size is 65536 times 512

 How do we operate on a vector larger than
16M elements?

 How do we operate on a vector larger than
16M elements?

 Option 1:
Use a 2-D indexing scheme

 Option 2:
Compute with several grids

 The GPU is faster than the CPU
 But, computing on the GPU involves

overhead:
Must get data to/from the GPU

 Where is the “break-even” point?

0

50

100

150

200

250

300

350

400

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Ti
m

e
(m

s)

Vector Size (Elements)

CUDA Vector-Vector Addition Performance

CPU

Memory Copy

GPU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
(m

s)

Vector Size (Elements)

CUDA Vector-Vector Addition Performance

CPU

Memory Copy

GPU

 Matrix addition is not a good CUDA program
 Why? In terms of Roofline? Not enough

operational intensity

 Never overcome the data transfer
 Not enough computation
 Better on the CPU

