EN 600.320/420 Parallel Programming

CUDA C Programming

What Is CUDA?

CUDA: Compute Unified Device Architecture
Created by NVIDIA

A way to perform computation on the GPU

Specification for:
A computer architecture
A language
An application interface (API)

CUDA Execution Model

A CUDA device is a highly parallel processor
We assume it can execute many hundreds of
threads in parallel

Threads to Stream Processors ratio > 1

When writing CUDA software, think in terms
of threads, not processors

Startup and Context Switching costs per
thread are very low!!

CUDA Execution Model

The CUDA programming model imposes a
data decomposition approach

The grid is the data domain (1D, 2D or 3D)
The grid is decomposed into thread blocks
A thread block is decomposed into threads

CUDA Data Decomposition

Device
Grid
B B
o | Thread Block (2,1)
B B T T
(1,0) (z,2) (0,0 (0,2)
B B T T
(2,0) | (2,2) (1,0) (z,2)
T T
(2,0) (2,1)

CUDA Execution Model

Thread blocks and threads are given unique
identifiers

Identifiers can be 1D, 2D or 3D

Used by the kernel to identify which part of a
problem to work on

E.g. which data from memory to read, etc.

CUDA Kernel

A kernel is a program that processes a single
data element
A thread runs the kernel on a data element

Grid->Blocks->Threads

Grid

Block (0, 0) Block(1,0) Block(2,0)

R R

Block (0, 1) Block (1, 1) Block (2, 1)

CUDA Execution Model

Thread Blo
A thread
All threac

cks
olock may have up to 512 threads
s in a thread block are run on the

same mu
Thus can

ti-processor

communicate via shared memory

And synchronize

Threads of a block are multiplexed onto a

multi-pro

CesSsOor as warps

Thread Block Scheduling

Multithreaded CUDA Program

Block0 Blockl Block2 Block3

Block4 Block5 Block6 Block?7

!

GPU with 2 SMs GPU with 4 SMs
SMO SM1 SMO SM1 SM 2 SM3
Block0 Block 1 Block0 Blockl Block2 Block3
Block2 Block 3 Block4 Block5 Block6 Block?

Block6 Block 7

Warps

Warps are groups of 32 threads
Warps are the fundamental scheduling unit of
the processor

Dispatched two at a time to 16 processors each
(on Fermi)

Each warp forms a SIMD group
Thread blocks are not SIMD, Warps are!

Warp Scheduling

Dual issue instructions

32 threads
16 cores
2 Units/SM
HEFFFFYYYTIHFFPIYTIIFFHPIYY | HEFFFYYYI T FIYY
o | tnemioss

Memory Addressibility

> Per-thread local

Thread Block

memory

: Per-block shared

> memory

AAAA

>

Memory Addressibility

Grid 0

Block (0,0) Block (1,0) Block (2, 0)

-
Block (0,1) Block (1,1) Block (2, 1)

Grid 1
Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
- >
Block (0, 2) Block (1, 2)

i

£

CUDA Memory Hierarchy

Multi-Processor

{

CUDA Processor

{

Registers

Local
Memory

Global Memory

Constant Memory

Shared Memory

Texture Memory

CUDA Memory Hierarchy

CUDA Processors have access to:

Registers Read/Write Private
Local Memory Read/Write Private
Shared Memory Read/Write Multi-Processor
Global Memory Read/Write Device
Constant Memory Read Device

Texture Memory Read Device

CUDA Memory Model

Registers
Large number of registers per stream
processor (1024)
Zero-clock cycle access
Store either 64 bit integer or 64 bit float

CUDA Memory Model

Shared Memory
A block of memory that is shared by all
stream processors in a multi-processor

48 or 16K per SM in Fermi

16KB per block, stored in 16x1KB banks
Very fast to access (i.e. as fast as registers!)
without bank conflicts

CUDA Memory Model

Global Memory
The large block of memory shared by all
multi-processors on the compute device
Size depends on device — 256 MB to 24GB
(Tesla K80 is 2x 12GB)
High bandwidth (K8o is 480 GB/s)

Slow to access — several hundred clock cycle
latency.

Fermi Memory Model

Fermi Memory Hierarchy
Thread

-4

<«
12

First CUDA Program

CUDA Program

We will create a simple CUDA program to add
two vectors

U={u, u,...u.}
V={v, Vv, ..V}

W=U+V={u ,+v,u,+v, ..U, +V]}

Vector-Vector Addition

W:U V Wi:Ui__Vi

Easy to parallelize: Each elementis
independent!

Threads

Threads: Each element is computed by a
separate thread

Thread Blocks

Blocks: Group sets of adjacent elements into
blocks

To conform with device parameters

Grid: The entire vector

Device Code

Our program will be a single source file, with
two parts:

Device Code
A kernel to perform the addition of two
elements

Kernel Function

__global void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVector()
{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];
}

CUDA Language

CUDA defines a language that is similar to
C/C++

CUDA source code contains a mix of host and
device code and data

CUDA Language

CUDA defines a language that is similar to
C/C++

Important Differences:
Runtime Library
Functions
Classes, Structs, Unions

CUDA Runtime Library

Code that runs on the device can’t use normal
C/C++ Runtime Library functions

No printf, fread, malloc, etc

Most math functions have device equivalent

CUDA Runtime Functions

There are a number of device specific
functions/intrinsics available:

__syncThreads
__mul24
atomicAdd, atomicCAS, atomicMin, ...

Functions

On a CUDA device, there is no stack
By default, all function calls are inlined

All local variables, function arguments are
stored in registers

NO function recursion

No function pointers

CUDA Language

CUDA defines a language that is similar to
C/C++

Syntactic extensions:
Declaration Qualifiers
Built-in Variables
Built-in Types
Execution Configuration

Declspec’s

Declspec = declaration specifier [declaration

qualifier
A modifier applied to declarations of:

Variables
Functions

Examples: const, extern, static

CUDA Function Declspec’s

CUDA uses the following declspecs for
functions:

__device
__host
__global

~_device

Declares that a function is compiled to, and
executes on the device

Callable only from another function on the
device

Declares that a function is compiled to and
executes on the host

Callable only from the host
Functions without any CUDA declspec are
host by default

Declares that a function is compiled to and
executes on the device

Callable from the host
Used as the entry point from host to device

Kernel Function

__global void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVector()
{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];
}

Vector Types

Can construct a vector type with special
function:
make_{typename}(v,, Vv, ..)

Can access elements of a vector type with
II \\ yIII \\. "7 \\ W Vecvar‘ X

dim3 is a special vector type for grids, same
as uint3

Built-in Variables

CUDA provides four global, built-in variables
threadIdx, blockIdx, blockDim,
gridDim

Typed asa‘dim3’or'uint3’
Accessible only from device code

Cannot take address
Cannot assign value

Host Code

Our program will be a single source file, with
two parts:

Host Code
Allocate GPU memory for vector

Copy vector from host to device memory
Launch kernel

Copy vector from device to host memory

Kernel Function

__global void VectorAdditionKernel(
const float* pVectorA,
const float* pVectorB,
float* pVector()
{
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
pVectorC[i] = pVectorA[i] + pVectorB[i];
}

Host Code — Copy Data To GPU

float* pDeviceVectorA = 0
float* pDeviceVectorB = 0;
float* pDeviceVectorC = 0

cudaMalloc((void**)&pDeviceVectorA, VectorSize);
cudaMalloc((void**)&pDeviceVectorB, VectorSize);
cudaMalloc((void**)&pDeviceVectorC, VectorSize);

cudaMemcpy (pDeviceVectorA, pHostVectorA,
VectorSize, cudaMemcpyHostToDevice);
cudaMemcpy (pDeviceVectorB, pHostVectorB,
VectorSize, cudaMemcpyHostToDevice);

Allocating Memory

Thereisnomalloc or free function that can
be called from device code

- How can we allocate memory?

From the host with cudaMalloc()

And copy data in from host to initialize

Host Code

bool VectorAddition(
unsigned N,
const float* pHostVectorA,
const float* pHostVectorB,
float* pHostVector(C)

const unsigned BLOCKSIZE = 512;

unsigned ThreadCount = N;

unsigned BlockCount = N / BLOCKSIZE;

unsigned VectorSize = ThreadCount * sizeof(float);

Host Code — Execute Kernel

VectorAdditionKernel<<<BlockCount,BLOCKSIZE>>>(
pDeviceVectorA,
pDeviceVectorB,
pDeviceVector(C);

Execution Configuration

CUDA provides syntactic sugar to launch the
execution of kernels

Func<<<GridDim, BlockDim>>>(Arguments, ..)

Execution Configuration

Func<<<GridDim, BlockDim>>>(Arguments, ..)

Funcisa global function

Execution Configuration

Func<<<GridDim, BlockDim>>>(Arguments, ..)

GridDimis a‘dim3’ typed expression giving
the size of the grid (i.e. problem domain)

Execution Configuration

Func<<<GridDim, BlockDim>>>(Arguments, ..)

BlockDimis a'dim3’ typed expression giving
the size of a thread block

Execution Configuration

Func<<<GridDim, BlockDim>>>(Arguments, ..)

The compiler turns this type of statement
into a block of code that configures, and
launches the kernel

Host Code — Read result from GPU

cudaMemcpy (pHostVectorC, pDeviceVectorC, VectorSize,
cudaMemcpyDeviceToHost);

CUDA Variable Declspec’s

CUDA uses the following declaration
qualifiers for variables:

__device
__Shared

__constant_

Only apply to global variables

~_device

Declares that a global variable is stored on
the device

The data resides in global memory
Has lifetime of the entire application
Accessible to all GPU threads
Accessible to the CPU via API

Declares that a global variable is stored on
the device

The data resides in shared memory
Has lifetime of the thread block

Accessible to all threads, one copy per thread
block

~_Shared

If not declared as volatile, reads from
different threads are not visible unless a
synchronization barrier used

Not accessible from CPU

__constant

Declares that a global variable is stored on
the device

The data resides in constant memory
Has lifetime of entire application
Accessible to all GPU threads (read only)
Accessible to CPU via API (read-write)

Vector Size

What if the vector size is not an integral
number of blocks?

Option 1:
Perform bounds checking in kernel

Option 2:
Pad out the vector to correct length

Maximum Vector Size

Grid is 1-dimensional

Maximum of 512 threads in a block
Maximum of 65536 blocks in a 2D grid

- Maximum vector size is 65536 times 512

How do we operate on a vector larger than
16M elements?

Maximum Vector Size

How do we operate on a vector larger than
16M elements?

Option 1:
Use a 2-D indexing scheme

Option 2:
Compute with several grids

Performance

The GPU is faster than the CPU

But, computing on the GPU involves
overhead:

— Must get data to/from the GPU

Where is the “break-even” point?

Vector Addition Performance

CUDA Vector-Vector Addition Performance

400

CPU
350
Memory Copy

300 | GPU

250

Time (ms)
N
o
o

[y
(V2
o

100

5o

[0} 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Vector Size (Elements)

Vector Addition Performance

CUDA Vector-Vector Addition Performance

0.5
CPU

0.45
Memory Copy

0.4 GPU

0.35

e
")

Time (ms)
o
N
(6,]

o) 500 1000 1500 2000 2500 3000 3500 4000 4500
Vector Size (Elements)

Performance Conclusion

Matrix addition is not a good CUDA program

Why? In terms of Roofline? Not enough
operational intensity

Never overcome the data transfer

Not enough computation
Better on the CPU

