Lecture 2.3
Weak Scaling

EN 600.320/420
Instructor: Randal Burns
31 January 2018
Gustafson’s Law

Reformulate Amdahl’s law for a fixed amount of time, rather than a fixed problem size

$$S_{\text{latency}}(s) = 1 - p + sp$$

- p is the optimized fraction
- s is the number of scaling resources (cores)
- S_{latency} is the speedup realized (same as Amdahl’s law)

Captures concept that as resources increase, we tend to solve bigger problems on more hardware.
Weak versus Strong Scaling

- **Strong scaling**
 - how the solution time varies with the number of processors for a fixed *total* problem size
 - Amdahl’s law

- **Weak scaling**
 - how the solution time varies with the number of processors for a fixed problem size *per processor*
 - Gustavson’s law

- Parallel efficiency applies to both concepts
Visualizing Weak Scaling

- Using a scaleup chart
 - Speedup over serial for bigger problem sizes

Gustafson's Law: $S(P) = P^{1+a(P-1)}$
Visualizing Weak Scaling

- As overhead – very confusing
(De)Merits of Weak Scaling

- Bigger problems = bigger science
 - Dominant trend in HPC over last 25 years

- Weak scaling coming to an end
 - Processor growth is far outstripping memory growth
 - Weak scaling can’t continue

- Weak scaling more robust measurement (often)
 - Strong hits a wall as reduced total time magnifies fixed startup costs

- Weak scaling difficult to express for algorithms
 - Scaling happens in total work, e.g. $O(n \log n)$, not in the input size

Problem size != input size
Final Thoughts

● In this class
 - Efficiency = efficiency chart (relative to 1.0)
 - Speedup is a speedup chart (relative to linear speedup)

● Express your scaling model
 - Weak (variable problem size)
 - Strong (fixed problem size)

● Try not to mix weak and strong scaling
 - Confuses measures (more next week)