The What of Parallelism?

- Solve bigger problems (weak scaling)
 - Largest direct numerical solutions have evolved from meshes of 1024^3 to 8096^3 in the last ten years
 - Reveals fundamental structure in the nature of turbulent flow

- Solve the same problems faster (strong scaling)
 - Brute force a 56-bit DES key has evolved from
 - $20M (est) 1976$
 - 1998, 4.5 days, $250,000$
 - 1999 22 hours, $250,000$
 - 2006, 9 days, $10,000$
 - 2008, 1 days, $10,000$
The Why of Parallelism?

- Solve bigger problems
- Solve the same problems faster or cheaper

- Architectures demand it
 - Multi-core
 - GPUs

- Minimize energy consumption
- Maximize investment
Speedup

- The fundamental concept in parallelism
 - \(T(1) \) = time to execute task on a single resource
 - \(T(n) \) = time to execute task on \(n \) resources
 - Speedup = \(T(1)/T(n) \)

http://web.eecs.utk.edu/~huangj/hpc/hpc_intro.php

Parallel Efficiency

- Companion concept to speedup
 - Efficiency = $S(n)/n = T(1)/nT(n)$
 - Informally: fraction of possible performance realized

Strong versus Weak Scaling

- Strong scaling: how the solution time varies with the number of processors for a fixed total problem size
 - Efficiency and speedup described for strong scaling
 - Amdahl’s law addresses strong scaling

- Weak scaling: how the solution time varies with the number of processors for a fixed problem size per processor
 - There is another law—Gustavon’s Law—that governs weak scaling
 - We’ll do weak scaling another day