Amdahl’s Law

- Improving a portion P of a computation by factor s results in an overall speedup of

$$S_{\text{latency}}(s) = \frac{1}{(1 - p) + \frac{p}{s}}$$

- Paraphrased: speedup limited to fraction improved
 - Obvious but fundamental observation

[Diagram showing 90% reduction in BLUE yields only 45% reduction in total]
Amdahl’s Law

\[S_{\text{latency}}(s) = \frac{1}{(1 - p) + \frac{p}{s}} \]

- \(p \) is the proportion of execution time that benefits from improved resources, i.e. the parallel part
 - \((1-p)\) is the portion that does not benefit; i.e. the serial part
- \(s \) is the speedup of the optimized part
- \(S_{\text{latency}}(s) \) theoretical speedup of the whole task

- **In practice (for analyzing parallel codes)**
 - \(S_{\text{latency}}(s) \) observed speedup
 - \(s \) number of resources (cores or processors)
 - \(p \) is the fraction that runs in parallel

- **We use the theory of parallelism (Amdahl’s) law to infer parameters/properties of a**
Amdahl’s Law and Parallelism

- Supposing you want to achieve a speedup of 80 with 100 processors, what fraction of the original computation can be sequential?

Paraphrased from Hennesey and Patterson, *Computer Architecture, 2nd Ed.*
Amdahl’s Law and Parallelism

- Supposing you want to achieve a speedup of 80 with 100 processors, what fraction of the original computation can be sequential?

\[
\text{Speedup} = \frac{1}{1 - P + \frac{P}{S}}
\]

\[
80 = \frac{1}{1 - P + \frac{P}{100}}
\]

\[
P = 0.9975
\]

Paraphrased from Hennesey and Patterson, *Computer Architecture, 2nd Ed.*
What is sequential?

- An abstraction to reason about parallelism.
- Sometimes literal:
 - Outer/control thread in OpenMP
 - File system I/O before launching a program
- Sometimes metaphorical:
 - When one/few processes are running and other complete
 - When parallelism introduces additional computation
- The unoptimized fraction of the code
 - When not all resources are doing useful work at full capacity