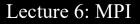
Lecture 12.2 MPI Async and Barrier

EN 600.320/420 Instructor: Randal Burns 7 March 2018

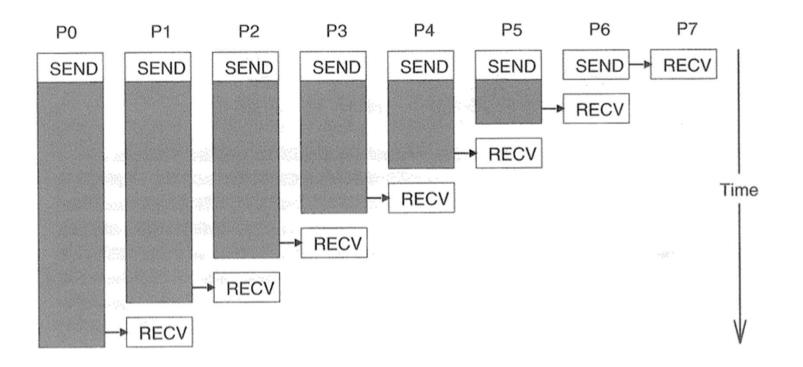
Department of Computer Science, Johns Hopkins University

Tags: Out of Order Delivery


source, tag, comm)

- Tag is an application defined concept used to determine delivery order
 - Specify a tag, get the message you desire, regardless of delivery order
 - There are wildcards to receive all messages (Reg. exps?)
- Communicator specifies a subset of nodes running a parallel application
 - Has a rank and size
 - Default MPI_COMM_WORLD

How about asynchronous I/O?


- MPI has support for non-blocking I/O
 - Send/recv request (returns as soon as resources allocated)
 - MPI_Isend(...)
 - Do some useful work
 - MPI_Wait(&request, &status) //finalize
- MPI_Wait: await the completion of operation
- MPI_Test: check the completion of operation and return immediately
- Program must leave buffer intact until completion!
 - Tie up memory in application space
 - Source of errors

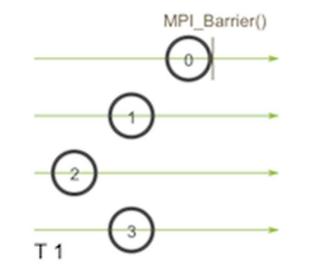
(Aside) MPI_SendRecv

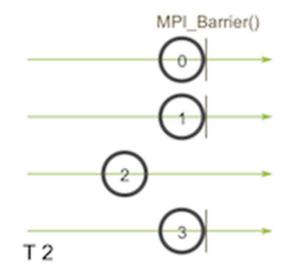
- For pairwise exchange, MPI_SendRecv
 - Always non-blocking
 - Useless: doesn't implement pairwise communication
- Don't use it's lazy and inefficient

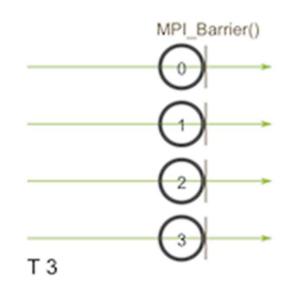
Asychronous I/O Useful?

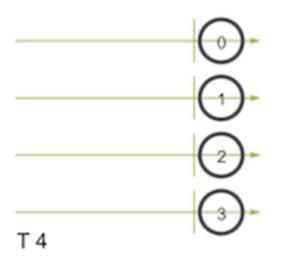
- Forces for:
 - Overlap communication with computation
- Forces against:
 - Ties up buffers
 - Complex code
 - Little overlap available for time-step synchronous programs
- Use as a last resort
 - Remember the runtime is trying to do this for you

Synchronization


- Implicit synchronization (blocking send/receives)
 - Most common model
 - Allows for fine-grained dependency resolution
- Explicit synchronization (barriers)
 - MPI_Barrier (MPI_COMM_WORLD)
 - All processes must enter barrier before any continue
 - Coarse-grained stops all
 - Common when interacting with shared resources, e.g. parallel file systems or shared-memory (when available)






Barrier Illustrated

http://www.mpitutorial.com/mpi-broadcast-andcollective-communication/

Lecture 6: MPI

Barriers vs. Send/Receive

- Barriers are useful when awaiting a global condition:
 - Data ready
 - Previous pipeline complete
 - Library call finished
 - Checkpoint written
- But, not a good replacement for pairwise sends and receives
 - They allow nodes to complete whenever their local synchronization constraints are met
 - Barriers are global and create global stalls

Lecture 6: MPI

