
Department of Computer Science, Johns Hopkins University

Lecture 12.1
MPI Messaging and Deadlock

EN 600.320/420

Instructor: Randal Burns

7 March 2018

Lecture 6: MPI

Point-to-Point Messaging

 This is the fundamental operation in MPI
– Send a message from one process to another

 Blocking I/O
– Blocking provides built in synchronization

– Blocking can lead to deadlock

 Send and receive, let’s do an example

See nodeadlock.c

Lecture 6: MPI

What’s in a message?

 First three arguments specify content
int MPI_Send (

void* sendbuf,

int count,

MPI_Datatype datatype,

int dest,

int tag,

MPI_Comm comm)

Lecture 6: MPI

What’s in a message?

 First three arguments specify content
int MPI_Recv (

void* recvbuf,

int count,

MPI_Datatype datatype,

int source,

. . .)

 All MPI data are arrays
– Where is it?

– How many?

– What type?

Lecture 6: MPI

MPI Datatypes

Lecture 6: MPI

Deadlock

 Conditions for deadlock
– Mutual exclusion

– Hold and wait

– No preemption

– Circular wait

 Deadlocks are cycles in a resource dependency graph

http://en.wikipedia.org/wiki/Deadlock

Lecture 6: MPI

Deadlock in MPI Messaging

 Synchronous: the caller waits on the message to be
delivered prior to returning

– So why didn’t our program deadlock?

See deadlock.c

Lecture 6: MPI

Deadlock in MPI Messaging

 Synchronous: the caller waits on the message to be
delivered prior to returning

– So why didn’t our program deadlock?

 Blocking standard send may be implemented by the
MPI runtime in a variety of ways

– MPI_Send(…, MPI_COMM_WORLD)
– Buffered at sender or receiver

– Depending upon message size, number of processes

 Converting to a mandatory synchronous send reveals
the deadlock

– MPI_Ssend(…, MPI_COMM_WORLD)
– But so could increasing the # of processors

Lecture 6: MPI

Standard Mode

 MPI runtime chooses best behavior for messaging
based on system/message parameters:

– Amount of buffer space

– Message size

– Number of processors

 Preferred way to program??
– Commonly used and realizes good performance

– System take available optimizations

 Can lead to horrible errors
– Because semantics/correctness changes based on job

configuration. Dangerous!

Lecture 6: MPI

Standard Mode Danger

 You develop program on small cluster
– Has plenty of memory for small instances

– Messages get buffered which hides unsafe (deadlock)
messaging protocol

 You launch code on big cluster with big instance
– Bigger messages and more memory consumption means that

MPI can’t buffer messages

– Standard mode falls back to synchronous sends

– Your code breaks

 Best practice: test messaging protocols with
synchronous sends, deploy code in standard mode

Lecture 6: MPI

Avoiding Deadlock

 Conditions for deadlock
– Mutual exclusion

– Hold and wait

– No preemption

– Circular wait

 Deadlocks are cycles in a resource dependency graph

 Avoiding deadlock in MPI
– Create cycle-free messaging disciplines

– Synchronize actions

See passitforward.c

http://en.wikipedia.org/wiki/Deadlock

Lecture 6: MPI

Messaging Topology

 Pair sends and receives
– No circular dependencies

– Relies on/assumes even number of nodes!

See passitforward.c

Lecture 6: MPI

Messaging Topologies

 Order/pair sends and receives to avoid deadlocks

 For linear orderings and rings
– Simplest and sufficient: (n-1) send/receive, 1 receive/send

– More parallel, alternate send/receive and receive/send

 For more complex communication topologies?

 Messaging topology dictates parallelism
– Important part of parallel design

