Lecture 11.2 MPI

EN 600.320/420 Instructor: Randal Burns 6 March 2018

Department of Computer Science, Johns Hopkins University

MPI

- MPI = Message Passing Interface
 - Message passing parallelism
 - Cluster computing (no shared memory)
 - Process (not thread oriented)
- Parallelism model
 - SPMD: by definition
 - Also implement: master/worker, loop parallelism
- MPI environment
 - Application programming interface
 - Implemented in libraries
 - Multi-language support (C/C++ and Fortran)

Vision

 Supercomputing Poster 1996

UT The University of Tennessee ornl Oak Ridge National Laboratory

Lecture 4: MPI

SPMD (Again)

- Single program multiple data
 - From wikipedia "Tasks are split up and run simultaneously on multiple processors with different input in order to obtain results faster. SPMD is the most common style of parallel programming."
 - Asynchronous execution of the same program (unlike SIMD)

https://www.sharcnet.ca/help/index.php/Getting_Started_with_MPI

Lecture 4: MPI

A Simple MPI Program

- Configure the MPI environment
- Discover yourself
- Take some differentiated activity

See mpimsg.c

- Idioms
 - SPMD: all processes run the same program
 - MPI_Rank: tell yourself apart from other and customize the local processes behaviours
 - Find neighbors, select data region, etc.

Build and Launch Scripts

- Scripts wrap local compiler and link to MPI
- *mpirun* to launch MPI job on the local machine/cluster
 - Launch through scheduler on HPC clusters (do not run on the login node)

Language	Script Name	Underlying Compiler
с	mpicc	gcc
	mpigee	gcc
	mpiicc	icc
	mpipgcc	pgcc
C ++	mpiCC	g++
	mpig++	g++
	mpiicpc	icpc
	mpipgCC	pgCC
Fortran	mpif77	g77
	mpigfortran	gfortran
	mpiifort	ifort
	mpipgf77	pgf77
	mpipgf90	pgf90

HPC Schedulers

- Maui/Torque
- SLURM
- OGE
- Each with their own submission scripts
 - Not mpirun

https://www.osc.edu/supercomputing/gettingstarted/hpc-basics

Lecture 4: MPI

Managing the runtime environment

- Initialize the environment
 - MPI_Init (&argc, &argv)
- Acquire information for process
 - MPI_Comm_size (MPI_COMM_WORLD, &num_procs)
 - MPI_Comm_rank (MPI_COMM_WORLD, &ID)
 - To differentiate process behavior in SMPD
- And cleanup
 - MPI_Finalize()
- Some MPI instances leave orphan processes around
 - MPI_Abort()
 - Don't rely on this

MPI is just messaging

- And synchronization constructs, which are built on messaging
- And library calls for discovery and configuration
- Computation is done in C/C++/Fortran SPMD program
- I've heard MPI called the "assembly language" of supercomputing
 - Simple primitives
 - Build your own communication protocols, application topologies, parallel execution
 - The opposite end of the design space from MR, Spark

