Lecture 11.2
MPI

EN 600.320/420
Instructor: Randal Burns
6 March 2018
MPI

- MPI = Message Passing Interface
 - Message passing parallelism
 - Cluster computing (no shared memory)
 - Process (not thread oriented)
- Parallelism model
 - SPMD: by definition
 - Also implement: master/worker, loop parallelism
- MPI environment
 - Application programming interface
 - Implemented in libraries
 - Multi-language support (C/C++ and Fortran)
Vision

- Supercomputing Poster 1996
SPMD (Again)

- Single program multiple data
 - From wikipedia “Tasks are split up and run simultaneously on multiple processors with different input in order to obtain results faster. SPMD is the most common style of parallel programming.”
 - Asynchronous execution of the same program (unlike SIMD)

https://www.sharcnet.ca/help/index.php/Getting_Started_with_MPI
A Simple MPI Program

- Configure the MPI environment
- Discover yourself
- Take some differentiated activity

See mpimsg.c

- Idioms
 - SPMD: all processes run the same program
 - MPI_Rank: tell yourself apart from other and customize the local processes behaviours
 - Find neighbors, select data region, etc.
Build and Launch Scripts

- Scripts wrap local compiler and link to MPI

- `mpirun` to launch MPI job on the local machine/cluster
 - Launch through scheduler on HPC clusters (do not run on the login node)

<table>
<thead>
<tr>
<th>Language</th>
<th>Script Name</th>
<th>Underlying Compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>mpicc</td>
<td>gcc</td>
</tr>
<tr>
<td></td>
<td>mpigcc</td>
<td>gcc</td>
</tr>
<tr>
<td></td>
<td>mpiicc</td>
<td>icc</td>
</tr>
<tr>
<td></td>
<td>mpirgcc</td>
<td>pgcc</td>
</tr>
<tr>
<td>C++</td>
<td>mpiCC</td>
<td>g++</td>
</tr>
<tr>
<td></td>
<td>mpiC++</td>
<td>g++</td>
</tr>
<tr>
<td></td>
<td>mpiicpc</td>
<td>icpc</td>
</tr>
<tr>
<td></td>
<td>mpipgCC</td>
<td>pgCC</td>
</tr>
<tr>
<td>Fortran</td>
<td>mpi77</td>
<td>g77</td>
</tr>
<tr>
<td></td>
<td>mpi77ftran</td>
<td>gfortran</td>
</tr>
<tr>
<td></td>
<td>mpiifort</td>
<td>ifort</td>
</tr>
<tr>
<td></td>
<td>mpi77f</td>
<td>pg77</td>
</tr>
<tr>
<td></td>
<td>mpi79f</td>
<td>pg90</td>
</tr>
</tbody>
</table>
HPC Schedulers

- Maui/Torque
- SLURM
- OGE

- Each with their own submission scripts
 - Not mpirun

https://www.osc.edu/supercomputing/getting-started/hpc-basics
Managing the runtime environment

- Initialize the environment
 - MPI_Init (&argc, &argv)

- Acquire information for process
 - MPI_Comm_size (MPI_COMM_WORLD, &num_procs)
 - MPI_Comm_rank (MPI_COMM_WORLD, &ID)
 - To differentiate process behavior in SMPD

- And cleanup
 - MPI_Finalize()

- Some MPI instances leave orphan processes around
 - MPI_Abort()
 - Don’t rely on this
MPI is just messaging

• And synchronization constructs, which are built on messaging
• And library calls for discovery and configuration

• Computation is done in C/C++/Fortran SPMD program

• I’ve heard MPI called the “assembly language” of supercomputing
 – Simple primitives
 – Build your own communication protocols, application topologies, parallel execution
 – The opposite end of the design space from MR, Spark