Final — 600.320/420/620, 14-18 December 2020 Page 1 Instructor: Randal Burns

Final, Parallel Programming (EN 620.320/420/620), Fall 2020

December 14, 2020 @ 8 am — December 18, 2020 @ 5 pm.

This is an untimed exam. It is expected to take 2-3 hours to complete. You may use any static online or written
resources to research the topics raised in the questions. The answers that you give must be solely your own, written and
prepared by you individually. You may not discuss your answers to the exam with anyone, including other students in
the class, past students, and in online forums. Because this is an open book untimed exam, the questions are designed
to require thoughtful answers. In some cases, the answers will not be obvious. Some questions may require additional
research.

Each question mark indicates that a response is required. Look for directives such as Explain, Define, or Give and
follow these instructions. Please keep your answers as brief as possible. Answers that include extraneous facts and
irrelevant details will lose credit even if a correct answer is included in the response.

The assignment should be submitted to GradeScope within the specified time. ¢

1. (15 pts) On the implementation of Spark reduceByKey(). Consider the following two lines of code that compute
the per key aggregate:

rdd.reduceByKey ((a, b) => a + Db)

rdd.groupByKey () .map ((x,y) => (x,sum(y)))

(a) (10 pts) Would you expect the reduceByKey or groupByKey implementation to be more efficient? Ex-
plain why. (Your explanation will likely need to draw upon external source material.)

(b) (5 pts) How is this analogous to the concept of a combiner in map/reduce?

2. (20 pts) Read the article on deadlock on the Mars pathfinder http://www.cs.cornell.edu/courses/
cs614/1999sp/papers/pathfinder.html. Explain why this situation meets all the criteria for a dead-
lock. You should identify the specific processes, resources, and actions that fulfill the properties for deadlock in
this specific example.

(a) Mutual exclusion.
(b) Circular dependency.
(c) No preemption.

(d) Hold and wait.



Final — 600.320/420/620, 14-18 December 2020 Page 2 Instructor: Randal Burns

3. (U5 pts) On the following roofline plot. The roofline is the dashed line on the diagonal that turns into the
horizontal line. Give brief answers to the questions, using one or two sentences.

: Opteron X2
) : :
g 4
T 4
O] 8 ¢
E
g ’
£ p
= Y 4
< 4 ¢ ]
2 r i
1 = -
1/2 i i i i i
1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(a) Place the lines for two computational kernels, one that is bound by the off-chip memory throughput and
one that is processor bound.

(b) What does the corner of the roofline represent?

(c) Why is it desirable to have computational kernels as close to that corner as possible?



Final — 600.320/420/620, 14-18 December 2020 Page 3 Instructor: Randal Burns

4. (10 pts) Understanding MPI. The following questions refer to the LLNL MPI tutorial (https://computing.
1llnl.gov/tutorials/mpi/).

(a) (5 pts) In the context of running on multicore, the tutorial states “The programming model clearly remains
a distributed memory model however, regardless of the underlying physical architecture of the machine.”
Why is MPI unable to take advantage of shared memory?

(b) (5 pts) Read the section entitled “Groups vs. Communicators”. Give an example of a program that would
desire to use multiple communicators within the same application. Our simple examples in class used only
MPI1_Comm_World.

5. (20 pts) The iterative step to my solution to k-means in Spark (project 5) looked like.

1. for i in range(iterations):

2. clusters = points.map(lambda x: assign_class(x, centroids))

3. ptstriples = clusters.zip(points)

4. means = ptstriples.groupByKey () .map(lambda x: (x[0], takemean (x[1])))
5. meansit = means.sortByKey () .map (lambda x: x[1]).collect ()

6. centroids = np.array(list (meansit))

Spark (like dask) builds an execution pipeline that performs lazy evaluation and can pipeline execution. So, the
steps are not run one after another with a barrier in between (see the animation in Lecture 11). However, Spark
and dask will implement barriers based on data dependencies, i.e. all partitions in a subsequent step depend on
the completion of all partitions in the previous step. We only covered barriers in passing in class. Wikipedia gives
an adequate description https://en.wikipedia.org/wiki/Barrier_ (computer_science).

(a) (5 pt) The computation of centroids in the last line must be completed prior to its use in assign_class.
What is the datatype of centroids? Is it parallel?

(b) (5 pts) Centroids needs to be sent to all partitions of the points RDD. What kind of collective commu-
nication operation is this? Explain briefly. Refer to the collective communication patterns in https:
//computing.llnl.gov/tutorials/mpi/#Collective_Communication_Routines.

(c) (10 pts) In lines 2-4, there is a barrier. Spark must complete all partitions of a previous computation before
starting the next function. What two steps are these? Why is it necessary to complete all of the previous
step complete before the next step begins?



