10/23/2016 Counting Triangles - Social Graph Analysis

Company | Blog | Customer Experience

Counting Triangles

by swalkauskas@vertica.com on September 21st, 2011 « in Hadoop, social graph analysis

Previous Post Next Post

by Stephen Walkauskas

Recently I've heard from or read about people who use Hadoop because their analytic jobs can’t achieve the same
level of performance in a database. In one case, a professor | visited said his group uses Hadoop to count triangles
“because a database doesn’t perform the necessary joins efficiently.”

Perhaps I'm being dense but | don’t understand why a database doesn'’t efficiently support these use-cases. In fact,
| have a hard time believing they wouldn’t perform better in a columnar, MPP database like Vertica — where memory
and storage are laid out and accessed efficiently, query jobs are automatically tuned by the optimizer, and
expression execution is vectorized at run-time. There are additional benefits when several, similar jobs are run or
data is updated and the same job is re-run multiple times. Of course, performance isn’t everything; ease-of-use and
maintainability are important factors that Vertica excels at as well.

Since the “gauntlet was thrown down”, to steal a line from Good Will Hunting, | decided to take up the challenge of
computing the number of triangles in a graph (and include the solutions in GitHub so others can experiment — more
on this at the end of the post).

Problem Description

A triangle exists when a vertex has two adjacent vertexes that are also adjacent to each other. Using friendship as
an example: If two of your friends are also friends with each other, then the three of you form a friendship triangle.
How nice. Obviously this concept is useful for understanding social networks and graph analysis in general (e.g. it
can be used to compute the clustering coefficient of a graph).

Let's assume we have an undirected graph with reciprocal edges, so there’s always a pair of edges ({e1,e2} and
{e2,e1}). We'll use the following input for illustration (reciprocal edge is elided to condense the information):

source destination

Ben Chuck
Ben Stephen
Chuck Stephen
Chuck Rajat
Rajat Stephen
Andrew Ben
Andrew Matt
Matt Pachu
Chuck Lyric

A little ascii art to diagram the graph might help.

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/

Commui

Evaluate

New Cut

Cardlytics Powe
Counting Triang
The Power of Pi
Announcing the

Introducing Vert

March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 201:
August 2012
July 2012

June 2012

April 2012
March 2012
October 2011
September 2011
August 2011

1/8

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/19/vertica-at-birte-2011-social-graph-analytics/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/10/05/being-green-with-data-exhaust/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/
http://web.archive.org/web/20130319022829/http://www.vertica.com/author/swalkauskasvertica-com/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/hadoop/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/social-graph-analysis/
http://web.archive.org/web/20130319022829/https://github.com/vertica/Graph-Analytics----Triangle-Counting
http://web.archive.org/web/20130319022829/http://www.vertica.com/blog/feed/rss/
http://web.archive.org/web/20130319022829/http://www.facebook.com/home.php#!/pages/Vertica/92274364194
http://web.archive.org/web/20130319022829/http://twitter.com/vertica
http://web.archive.org/web/20130319022829/http://www.linkedin.com/company/vertica-systems
http://web.archive.org/web/20130319022829/https://plus.google.com/105797672320523981446
http://web.archive.org/web/20130319022829/http://my.vertica.com/
http://web.archive.org/web/20130319022829/http://my.vertica.com/evaluate/
http://web.archive.org/web/20130319022829/http://my.vertica.com/customer-sign-up-form/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/10/02/cardlytics-powers-more-ads-with-hp-vertica/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/01/the-power-of-projections-part-1/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/10/18/announcing-the-vertica-community-edition/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/06/13/introducing-vertica-6/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2013/03/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2013/02/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2013/01/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/12/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/11/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/10/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/09/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/08/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/07/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/06/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/04/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2012/03/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/10/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/08/
http://web.archive.org/web/20130319022829/http://my.vertica.com/
http://web.archive.org/web/20130319022829/http://www.vertica.com/about/
http://web.archive.org/web/20130319022829/http://www.vertica.com/blog/
http://web.archive.org/web/20130319022829/http://www.vertica.com/customer-experience/
http://web.archive.org/web/20130319022829/http://www.vertica.com/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/
http://web.archive.org/web/20130319022829/http://www.vertica.com/customers/
http://web.archive.org/web/20130319022829/http://www.vertica.com/partners/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/
http://web.archive.org/web/20130319022829/http://www.vertica.com/news/

10/23/2016 Counting Triangles - Social Graph Analysis

/ \

VoS \
Stephen------- Rajat

| know you can quickly count the number of triangles. I'm very proud of you but imagine there are hundreds of
millions of vertexes and 10s of billions of edges. How long would it take you to diagram that graph? And how much
longer to count all of the triangles? And what if your 2 year old daughter barges in counting “one, two, three, four,
...” and throws off your count?

Below we present a few practical solutions for large scale graphs and evaluate their performance.

The Hadoop Solution

Let’s consider first the Hadoop approach to solving this problem. The MapReduce (MR) framework implemented in
Hadoop allows us to distribute work over many computers to get the count faster. The solution we describe here is
a simplified version of the work at Yahoo Research. You can download our solution here.

Overview

The solution involves a sequence of 3 MR jobs. The first job constructs all of the triads in the graph. A triad is
formed by a pair of edges sharing a vertex, called its apex. It doesn’t matter which vertex we choose as the apex of
the triad, so for our purposes we’ll pick the “lowest” vertex (e.g. friends could be ordered alphabetically by their
names). The Yahoo paper makes a more intelligent choice of “lowest” — the vertex with the smallest degree.
However that requires an initial pass of the data (and more work on my part) so | skipped that optimization and did
so consistently for all solutions to ensure fairness.

These triads and the original edges are emitted as rows by the first MR job, with a field added to distinguish the
two. Note that the output of the first job can be quite large, especially in a dense graph. Such output is consumed
by the second MR job, which partitions the rows by either the unclosed edge, if the row is a triad, or the original
edge. A partition has n triangles if it contains an original edge and n triads. A third, trivial MR job counts the
triangles produced by the second job, to produce the final result.

Details

Let’s look at each MR job in detail. The map part of the first job generates key-value pairs for each triad such that
the apex is the key and the value is the edge. In our small example the map job would emit the following rows.

key value

Andrew Andrew, Matt
Andrew Andrew, Pachu
Andrew Andrew, Ben
Matt Matt, Pachu
Ben Ben, Chuck
Ben Ben, Stephen
Chuck Chuck, Rajat
Chuck Chuck, Lyric

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/

June 2011
February 2011
January 2011
November 2010
October 2010
September 201(
August 2010
June 2010

May 2010

April 2010
January 2010
December 2009
December 2008
July 2008
January 2008
October 2007
September 200

bbbt (1)

big data (35)
Bulldozer (2)
column store (1t
Community (1)
compression (4)
Customers (1)
data loading (2)
Data Scientists |
Engineering (8)
External Tables
Fault Tolerance
Hadoop (11)
HDFS (4)

HP Discover (1)
HP IT (2)
in-database ana
interns (7)
merge (1)
Moneyball (2)
MyVertica (1)
pattern matching

R programming

2/8

http://web.archive.org/web/20130319022829/http://184.106.12.19/wp-content/uploads/2011/09/Triangles1.png
http://web.archive.org/web/20130319022829/http://theory.stanford.edu/~sergei/papers/www11-triangles.pdf
http://web.archive.org/web/20130319022829/https://github.com/vertica/Graph-Analytics----Triangle-Counting
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/06/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/02/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/01/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/11/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/10/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/09/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/08/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/06/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/05/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/04/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2010/01/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2009/12/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2008/12/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2008/07/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2008/01/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2007/10/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2007/09/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/bbbt/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/big-data/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/bulldozer/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/column-store/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/community/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/compression/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/customers/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/data-loading/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/data-scientists/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/engineering-careers/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/external-tables/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/fault-tolerance/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/hadoop/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/hdfs/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/hp-discover/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/hp-it/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/in-database-analytics/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/interns/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/merge/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/moneyball/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/myvertica/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/pattern-matching/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/r-programming/

10/23/2016 Counting Triangles - Social Graph Analysis

Chuck Chuck, Stephen
Rajat Rajat, Stephen

For each apex-partition, the reduce job emits the original edges and all of the corresponding triads (there are ?(j-1)
-> j=1 to d triads per partition, where d is the degree of the vertex at the apex). For each original edge, the key is
the edge itself and the value is “edge”. For each triad, the key is the unclosed edge. In other words, the edge
needed to complete the triangle. The value is “triad.” The actual code used “0" for the edge value and “1" for the
triad value for run-time efficiency.

The rows corresponding to the triads emitted by this reduce job in our simple example are described below in the
“key” and “value” columns (the original edges are also emitted by the reduce job but elided below for brevity). For
presentation purposes we added a third column “triad content”. That column is not produced by the actual reduce
job.

key value triad content

Ben, Matt triad {Andrew, Ben}, {Andrew, Matt}
Ben, Pachu triad {Andrew, Ben}, {Andrew, Pachu}
Matt, Pachu triad {Andrew, Matt}, {Andrew, Pachu}
Chuck, Stephen triad {Ben, Chuck}, {Ben, Stephen}
Lyric, Rajat triad {Chuck, Lyric}, {Chuck, Rajat}
Lyric, Stephen triad {Chuck, Lyric}, {Chuck, Stephen}
Rajat, Stephen triad {Chuck, Rajat}, {Chuck, Stephen}

The input to the next reduce job is partitioned such that the unclosed edge of each triad is in the same partition as
its corresponding original edge, if any. The reduce job just needs to check for the existence of an original edge in
that partition (i.e., a row with value set to “edge”). If it finds one, all of the triads in the partition are closed as
triangles. The reduce job sums up all of the closed triads and on finalize emits a count. A trivial final MR job
aggregates the counts from the previous job.

There we've used MapReduce to count the number of triangles in a graph. The approach isn’t trivial but it's not
horribly complex either. And if it runs too slowly we can add more hardware, each machine does less work and we
get our answer faster.

Experiences with Hadoop

| have to admit it took me much longer than | estimated to implement the Hadoop solution. Part of the reason being
I’'m new to the API, which is exacerbated by the fact that there are currently two APIs, one of them deprecated, the
other incomplete, forcing use of portions of the deprecated API. Specifically, the examples | started with were
unfortunately based on the deprecated APl and when | ported to the newer one | ran into several silly but
somewhat time consuming issues (like mapred’s version of Reducer.reduce takes an lterator but mapreduce’s
version takes an lterable — they look similar to the human eye but the compiler knows that a method that takes an
Iterator should not be overridden by one that takes an Ilterable). Learning curve aside there was a fair chunk of
code to write. The simple version is >200 lines. In a more complex version | added a secondary sort to the MR job
that computes triads. Doing so introduced several dozen lines of code (most of it brain dead stuff like implementing
a Comparable interface). Granted a lot of the code is cookie cutter or trivial but it still needs to be written (or cut-n-
pasted and edited). In contrast, to add a secondary sort column in SQL is a mere few characters of extra code.

The PIG Solution

Rajat Venkatesh, a colleague of mine, said he could convert the algorithm to a relatively small PIG script and he
wagered a lunch that the PIG script would outperform my code. He whipped up what was eventually a 10 statement
PIG script that accomplished the task. When we get to the performance comparison we’ll find out who got a free
lunch.

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/

security (1)
social graph ane
sorted data (5)
SQL (5)
third-party tools
Uncategorized (
updates & delet:
use cases (6)
User-Defined Lc
vertica (42)
Vertica 6 (3)
Vertica 6.1 (3)
Vertica Commur
Vertica Custome
Vertica OEM (1)
Video Webinars
VLDB (2)

workload analyz

3/8

http://web.archive.org/web/20130319022829/http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/Reducer.html#reduce%28K2,%20java.util.Iterator,%20org.apache.hadoop.mapred.OutputCollector,%20org.apache.hadoop.mapred.Reporter%29
http://web.archive.org/web/20130319022829/http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapreduce/Reducer.html#reduce%28KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context%29
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/security/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/social-graph-analysis/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/sorted-data/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/sql/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/third-party-tools-integration/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/uncategorized/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/updates-deletes/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/use-cases/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/user-defined-load-udl/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vertica/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vertica-6/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vertica-6-1/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vertica-community-edition/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vertica-customers/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vertica-oem/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/video-webinars/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/vldb/
http://web.archive.org/web/20130319022829/http://www.vertica.com/category/workload-analyzer/

10/23/2016 Counting Triangles - Social Graph Analysis

set default_parallel N;

set mapreduce. job.maps M;

EDGES = load 'input/few-edges.txt' using PigStorage(' ') as (source:long, dest:long);
CANON_EDGES_1 = filter EDGES by source < dest;

CANON_EDGES_2 = filter EDGES by source < dest;

TRIAD_JOIN = join CANON_EDGES_1 by dest, CANON_EDGES 2 by source;

OPEN_EDGES = foreach TRIAD JOIN generate CANON_EDGES 1::source, CANON_EDGES_2::dest;
TRIANGLE_JOIN = join CAMON_EDGES_1 by (source,dest), OPEN_EDGES by (CANON_EDGES_1::source, CANON_EDGES_2::dest);
TRIANGLES = foreach TRIANGLE_JOIN generate 1 as a:int;

CONST_GROUP = group TRIANGLES ALL parallel 1;

FINAL_COUNT = foreach CONST_GROUP generate COUNT(TRIANGLES);

dump FINAL_COUNT;

Here’s the PIG solution, much simpler than coding MR jobs by hand. We used PIG 0.8.1. We made several passes
over the script to optimize it, following the PIG Cookbook. For example, we rearranged the join order and put the
larger table last (I’'m probably not giving too much away by mentioning that Vertica’s optimizer uses a cost model
which properly chooses join order). We also tried several values for default_parallel and mapreduce.job.maps (and
we changed the corresponding parameter in mapred-site.xml as well, just to be safe). We did not enable Izo
compression for two reasons. First, considering the hardware used for the experiment (large RAM — plenty of file
system cache, high throughput network), the CPU tax incurred by compression was more likely to hurt performance
than help in this case. Second, one website listed 7 steps to get the compression working but the 2nd step had
several steps itself, so | gave up on it.

The Vertica Solution

Can you count the number of triangles in a graph using a database? Of course. First create an “edges” table and
load the graph. Vertica can automate the decision about how to organize storage for the table — something called
projections specify important characteristics of physical storage such as sort order, segmentation, encoding and
compression. In this case we simply tell Vertica how to distribute data among nodes in our cluster (Vertica calls this
segmenting). Alternatively the Vertica Database Designer can be used to automate projection design. The following
statements create our table and load data.

create table edges (source int not null, dest int not null) segmented by hash({source,dest) all nodes;

copy edges from :file direct delimiter ;

We've got the data loaded and stored in an efficient way. If we need to run more jobs with the same data later we
won’t incur the load cost again. Likewise, if we need to modify the data we only incur work proportional to the
change. Now we just need a horribly complex hack to count triangles. Take a deep breath, stretch, get a cup of
coffee, basically do what you have to do to prepare your brain for this challenge. Ok, ready? Here it is:

select count(*)
from edges el
join edges e2 on el.dest
join edges e3 on el.dest

e2.source and el.source < el.source
ed.source and e3d.dest = el.source and e2.source < el.source;

Good, you didn’t run away screaming in horror. If we ignore the less than predicates the query is simply finding all
triplets that form a cycle, v1 -> v2 ->v3 -> v1. The less than predicates ensure we don’t count the same triangle
multiple times (remember our edges are reciprocal and we only need to consider triangles with the “lowest” vertex
at the apex).

That’s it! A single, 4-liner query. Of course you're interested in what the Vertica database does under the covers
and how its performance, disk utilization and scalability compare with those of Hadoop and PIG.

Performance Study

The publicly available LiveJournal social network graph (http://snap.stanford.edu/data/soc-LiveJournal1.html) was
used to test performance. It was selected because of its public availability, its modest size permitted relatively quick
experiments. The modified edges file (in the original file not every edge is reciprocated) contained 86,220,856

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/ 4/8

http://web.archive.org/web/20130319022829/http://184.106.12.19/2011/09/01/the-power-of-projections-part-1/
http://web.archive.org/web/20130319022829/http://184.106.12.19/2011/09/02/the-power-of-projections-part-2/
http://web.archive.org/web/20130319022829/http://snap.stanford.edu/data/soc-LiveJournal1.html

10/23/2016 Counting Triangles - Social Graph Analysis

edges, about 1.3GB in raw size. We used HDFS dfs.replication=2 (replication=1 performed worse — fewer map jobs
were run, almost regardless of the mapreduce.job.maps value). Experiments were run on between 1 and 4
machines each with 96GB of RAM, 12 cores and 10GBit interconnect.

Run-Time Cost

All solutions are manually tuned to obtain the best performance numbers. For the Hadoop and PIG solutions, the
number of mappers and reducers as well as the code itself were tweaked to optimize performance. For the Vertica
solution, out-of-the-box Vertica is configured to support multiple users; default expectation is 24 concurrent queries
for the hardware used. This configuration was tweaked to further increase pipeline parallelism (equivalent
configuration settings will be on by default in an upcoming release). The following chart compares the best
performance numbers for each solution.

13140
14000 \ ==Hadoop
12000 P
= 9540 \ _
w 10000 sle=Vertica
=1
g 0\ \
2 8000 GEO0
S G000 4
E 3900
4000
= N.l
2000
287 135 97
0 s ; = : . .
1 2 4
Cluster Size

PIG beat my Hadoop program, so my colleague who wrote the PIG script earned his free lunch. One major factor is
PIG’s superior join performance — its uses hash join. In comparison, the Hadoop solution employs a join method
very close to sort merge join.

Vertica’s performance wasn’t even close to that of Hadoop — thankfully. It was much much better. In fact Vertica ate
PIG’s and Hadoop’s lunch — its best time is 22x faster than PIG’s and 40x faster than the Hadoop program (even
without configuration tweaks Vertica beats optimized Hadoop and PIG programs by more than a factor of 9x in
comparable tests).

Here are a few key factors in Vertica’s performance advantage:
o Fully pipelined execution in Vertica, compared to a sequence of MR jobs in the Hadoop and PIG solutions,
which incurs significant extra 1/0. We quantify the differences in how the disk is used among the solutions
below in the “disk usage” study.

o Vectorization of expression execution, and the use of just-in-time code generation in the Vertica engine

o More efficient memory layout, compared to the frequent Java heap memory allocation and deallocation in
Hadoop / PIG

Overall, Hadoop and PIG are free in software, but hardware is not included. With a 22x speed-up, Vertica’s
performance advantage effectively equates to a 95% discount on hardware. Think about that. You'd need 1000

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/

5/8

10/23/2016 Counting Triangles - Social Graph Analysis

nodes to run the PIG job to equal the performance of just 48 Vertica nodes, which is a rack and a half of the Vertica
appliance.

Finally consider what happens when the use case shifts from counting all of the triangles in a graph to counting (or
listing) just the triangles that include a particular vertex. Vertica’s projections (those things that define the physical
storage layout) can be optimized such that looking up all of the edges with a particular vertex is essentially an index
search (and once found the associated edges are co-located on disk — an important detail which anyone who
knows the relative cost of a seek versus a scan will appreciate). This very quickly whittles e1 and €3 down to
relatively few rows which can participate in a merge join with e2. All in all a relatively inexpensive operation. On the
other hand PIG and Hadoop must process all of the edges to satisfy such a query.

Disk Usage

For the input data set of 1.3GB, it takes 560MB to store it in Vertica’s compressed storage. In comparison, storing it
in HDFS consumes more space than the raw data size.

At run-time, here is the peak disk usage among all 3 solutions in a 4-node cluster (remember Izo was not enabled
for Hadoop and PIG — turning it on would reduce disk usage but likely hurt performance).

180
160 -

140
120
100

o
(=1
I

Disk Uasge (GB)

a0 -
20 -

0.56

W Hadoop MPIG W Vertica

Given the huge differences in disk usage and thus 1/O work, along with other advantages outlined above it should
come as no surprise that the Vertica solution is much faster.

Join Optimization

As we mentioned earlier, the Hadoop solution does not optimize for join performance. Both Vertica and PIG were
able to take advantage of a relatively small edges table that fit in memory (100s of billions or more edges can fit in
memory when distributed over 10s or 100s of machines), with a hash join implementation.

For PIG, the join ordering needs to be explicitly specified. Getting this ordering wrong may carry a significant
performance penalty. In our study, the PIG solution with the wrong join ordering is 1.5x slower. The penalty is likely
even higher with a larger data set, where the extra disk 1/O incurred in join processing can no longer be masked by
sufficient RAM. To further complicate the matter, the optimal join ordering may depend on the input data set (e.g.

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/ 6/8

10/23/2016 Counting Triangles - Social Graph Analysis

whether the input graph is dense or not). It is infeasible for users to manually tweak the join ordering before
submitting each PIG job.

In comparison, the Vertica columnar optimizer takes care of join ordering as well as many other factors crucial to
optimizing for the job run-time.

The Right Tool for the Job

Many people get significant value out of Hadoop and PIG, including a number of Vertica’s customers who use these
tools to work with unstructured or semi-structured data — typically before loading that data into Vertica. The question
is which tool is best suited to solve your problem. With User Defined Functions, Aggregates, Load, et cetera
available or coming soon to Vertica the lines are becoming blurred but when it comes to performance the choice is
crystal clear.

In the case of triangle counting as we presented above, the Vertica solution enjoys the following advantages over
Hadoop and PIG:

» Ease of programming and maintenance, in terms of both ensuring correctness (The Vertica SQL solution is
simpler) and achieving high performance (The Vertica optimizer chooses the best execution plan)

e Compressed storage

o Orders of magnitude faster query performance

Do Try this at Home

It is a relatively safe experiment (unlike slicing a grape in half and putting it in the microwave — don’t try that one at
home). We've uploaded all three solutions to GitHub. Feel free to run your own experiments and improve on our
work. As it stands the project includes a build.xml file which runs the Hadoop and PIG solutions in standalone mode
— the project README file describes these targets and more in detail. With a little more work one can configure a
Hadoop cluster and run the experiments in distributed mode, which is how we ran the experiments described
above.

It's a little more difficult to run the tests if you are not currently a Vertica customer, but we do have a free trial
version of the Vertica Analytics Platform software.

Acknowledgements

Many thanks to Rajat Venkatesh for writing the PIG script (though | already thanked him with a lunch) and
Mingsheng Hong for his suggestions, ideas and edits.

Previous Post Next Post

We were unable to load Disqus. If you are a moderator please see our troubleshooting guide.

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/

7/8

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/19/vertica-at-birte-2011-social-graph-analytics/
http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/10/05/being-green-with-data-exhaust/
http://web.archive.org/web/20130319022829/http://184.106.12.19/2010/04/28/vertica-under-the-hood-the-query-optimizer/
http://web.archive.org/web/20130319022829/http://184.106.12.19/2011/08/15/the-right-tool-for-the-job-using-hadoop-with-vertica-for-big-data-analytics/
http://web.archive.org/web/20130319022829/http://www.youtube.com/watch?v=vCNNqgKqnaQ
http://web.archive.org/web/20130319022829/https://github.com/vertica/Graph-Analytics----Triangle-Counting
http://web.archive.org/web/20130319022829/http://184.106.12.19/evaluate/
https://docs.disqus.com/help/83/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/real-time-loading-querying/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/telecommunications/
http://web.archive.org/web/20130319022829/http://www.vertica.com/customers/case-studies/
http://web.archive.org/web/20130319022829/http://www.vertica.com/partners/infrastructure/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/white-papers/
http://web.archive.org/web/20130319022829/http://www.vertica.com/news/in-the-news/
http://web.archive.org/web/20130319022829/http://www.vertica.com/news/press/

10/23/2016

Advanced In-
Database Analytics

Database Designer
& Admin Tools

Columnar Storage
& Execution

Aggressive Data
Compression

Scale-Out MPP
Architecture

Automatic High
Availability

Optimizer &
Workload
Management

Native BI, ETL, &
Hadoop/MapReduce

Financial Services
Web 2.0 & Gaming
Healthcare

OEM

Customer
Testimonials

Counting Triangles - Social Graph Analysis

Business
Intelligence
Partners

Data Integration
Partners

Solution Partners
Partner with Vertica

OEM

Data Sheets &
Solutions Briefs

Events
Training

Webinars

Videos

Documentation

Research Reports

Careers

Glossary

http://web.archive.org/web/20130319022829/http://www.vertica.com/2011/09/21/counting-triangles/

Cambridge, MA 02140
Phone: 617-386-4400
Map & Directions

ASIA-PACIFIC OFFICE
Email: apjverticasales@hp.com

Fax: 978-600-1001

Copyright ©2013 Vertica, All Ri¢

8/8

http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/advanced-in-database-analytics/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/database-designer/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/columnar-storage-execution/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/aggressive-data-compression/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/scale-out-mpp-architecture/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/automatic-high-availability/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/vertica-optimizer-execution-engine-workload-management/
http://web.archive.org/web/20130319022829/http://www.vertica.com/the-analytics-platform/native-bi-etl-and-hadoop-mapreduce-integration/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/financial-services/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/web-social-gaming/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/healthcare/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/oem/
http://web.archive.org/web/20130319022829/http://www.vertica.com/customers/customer-testimonials/
http://web.archive.org/web/20130319022829/http://www.vertica.com/partners/business-intelligence/
http://web.archive.org/web/20130319022829/http://www.vertica.com/partners/data-integration-etl/
http://web.archive.org/web/20130319022829/http://www.vertica.com/partners/solution-partners/
http://web.archive.org/web/20130319022829/http://www.vertica.com/partners/partner-with-vertica/
http://web.archive.org/web/20130319022829/http://www.vertica.com/industries/oem/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/data-sheets-solutions-brief/
http://web.archive.org/web/20130319022829/http://www.vertica.com/customer-experience/training/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/video/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/videos/
http://web.archive.org/web/20130319022829/http://www.vertica.com/documentation/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/research-reports/
http://web.archive.org/web/20130319022829/http://www.vertica.com/about/careers/
http://web.archive.org/web/20130319022829/http://www.vertica.com/resources/data-analytics-glossary/
http://web.archive.org/web/20130319022829/http://www.vertica.com/news/events/
http://web.archive.org/web/20130319022829/http://www.vertica.com/blog/feed/rss/
http://web.archive.org/web/20130319022829/http://www.facebook.com/home.php#!/pages/Vertica/92274364194
http://web.archive.org/web/20130319022829/http://twitter.com/vertica
http://web.archive.org/web/20130319022829/http://www.linkedin.com/company/hp-vertica
http://web.archive.org/web/20130319022829/https://plus.google.com/105797672320523981446
http://web.archive.org/web/20130319022829/http://goo.gl/maps/Dlza

